multimodal-clem-leaderboard / src /leaderboard_utils.py
sherzod-hakimov's picture
Upload 3 files
b21c210 verified
import os
import pandas as pd
import requests
import json
from io import StringIO
from datetime import datetime
from src.assets.text_content import REPO
def get_github_data():
"""
Read and process data from CSV files hosted on GitHub. - https://github.com/clembench/clembench-runs
Returns:
github_data (dict): Dictionary containing:
- "text": List of DataFrames for each version's textual leaderboard data.
- "multimodal": List of DataFrames for each version's multimodal leaderboard data.
- "date": Formatted date of the latest version in "DD Month YYYY" format.
"""
base_repo = REPO
json_url = base_repo + "benchmark_runs.json"
response = requests.get(json_url)
# Check if the JSON file request was successful
if response.status_code != 200:
print(f"Failed to read JSON file: Status Code: {response.status_code}")
return None, None, None, None
json_data = response.json()
versions = json_data['versions']
version_names = sorted(
[ver['version'] for ver in versions],
key=lambda v: list(map(int, v[1:].split('_')[0].split('.'))), # {{ edit_1 }}: Corrected slicing to handle 'v' prefix
reverse=True
)
# Get Last updated date of the latest version
latest_version = version_names[0]
latest_date = next(
ver['date'] for ver in versions if ver['version'] == latest_version
)
formatted_date = datetime.strptime(latest_date, "%Y-%m-%d").strftime("%d %b %Y") # {{ edit_1 }}: Updated date format
# Get Leaderboard data - for text-only + multimodal
github_data = {}
mm_dfs = []
mm_date = ""
mm_flag = True
for version in version_names:
# Check if version ends with 'multimodal' before constructing the URL
mm_suffix = "_multimodal" if not version.endswith('multimodal') else ""
mm_url = f"{base_repo}{version}{mm_suffix}/results.csv" # {{ edit_1 }}: Conditional suffix for multimodal
mm_response = requests.get(mm_url)
if mm_response.status_code == 200:
df = pd.read_csv(StringIO(mm_response.text))
df = process_df(df)
df = df.sort_values(by=df.columns[1], ascending=False) # Sort by clemscore column
mm_dfs.append(df)
if mm_flag:
mm_date = next(ver['date'] for ver in versions if ver['version'] == version)
mm_date = datetime.strptime(mm_date, "%Y-%m-%d").strftime("%d %b %Y")
mm_flag = False
github_data["multimodal"] = mm_dfs
github_data["date"] = mm_date
return github_data
def process_df(df: pd.DataFrame) -> pd.DataFrame:
"""
Process dataframe:
- Convert datatypes to sort by "float" instead of "str"
- Remove repetition in model names
- Update column names
Args:
df: Unprocessed Dataframe (after using update_cols)
Returns:
df: Processed Dataframe
"""
# Convert column values to float, apart from the model names column
for col in df.columns[1:]:
df[col] = pd.to_numeric(df[col], errors='coerce')
# Remove repetition in model names
df[df.columns[0]] = df[df.columns[0]].str.replace('-t0.0', '', regex=True)
df[df.columns[0]] = df[df.columns[0]].apply(lambda x: '--'.join(set(x.split('--'))))
# Update column names
custom_column_names = ['Model', 'Clemscore', '% Played', 'Quality Score']
for i, col in enumerate(df.columns[4:]): # Start Capitalizing from the 5th column
parts = col.split(',')
custom_name = f"{parts[0].strip().capitalize()} {parts[1].strip()}"
custom_column_names.append(custom_name)
# Rename columns
df.columns = custom_column_names
return df
def query_search(df: pd.DataFrame, query: str) -> pd.DataFrame:
"""
Filter the dataframe based on the search query.
Args:
df (pd.DataFrame): Unfiltered dataframe.
query (str): A string of queries separated by ";".
Returns:
pd.DataFrame: Filtered dataframe containing searched queries in the 'Model' column.
"""
if not query.strip(): # Reset Dataframe if empty query is passed
return df
queries = [q.strip().lower() for q in query.split(';') if q.strip()] # Normalize and split queries
# Filter dataframe based on queries in 'Model' column
filtered_df = df[df['Model'].str.lower().str.contains('|'.join(queries))]
return filtered_df