salomonsky
commited on
Commit
•
219d097
1
Parent(s):
e3be785
Update app.py
Browse files
app.py
CHANGED
@@ -13,31 +13,33 @@ from huggingface_hub import login
|
|
13 |
from gradio_imageslider import ImageSlider
|
14 |
|
15 |
|
|
|
16 |
translator = Translator()
|
17 |
-
HF_TOKEN = os.environ.get("HF_TOKEN"
|
18 |
basemodel = "black-forest-labs/FLUX.1-schnell"
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
-
CSS = "footer { visibility: hidden; }"
|
21 |
-
JS = "function () { gradioURL = window.location.href; if (!gradioURL.endsWith('?__theme=dark')) { window.location.replace(gradioURL + '?__theme=dark'); } }"
|
22 |
|
23 |
|
|
|
24 |
def enable_lora(lora_add):
|
25 |
return basemodel if not lora_add else lora_add
|
26 |
|
27 |
|
|
|
28 |
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
|
29 |
-
|
30 |
-
seed
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
|
|
|
36 |
except Exception as e:
|
37 |
-
raise gr.Error(f"Error
|
38 |
-
return image, seed
|
39 |
|
40 |
|
|
|
41 |
async def gen(prompt, lora_add, lora_word, width, height, scales, steps, seed, upscale_factor, process_upscale):
|
42 |
model = enable_lora(lora_add)
|
43 |
image, seed = await generate_image(prompt, model, lora_word, width, height, scales, steps, seed)
|
@@ -52,12 +54,14 @@ async def gen(prompt, lora_add, lora_word, width, height, scales, steps, seed, u
|
|
52 |
return [image_path, upscale_image]
|
53 |
|
54 |
|
|
|
55 |
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
56 |
client = Client("finegrain/finegrain-image-enhancer")
|
57 |
result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
|
58 |
return result[1]
|
59 |
|
60 |
|
|
|
61 |
css = """
|
62 |
#col-container{
|
63 |
margin: 0 auto;
|
@@ -65,7 +69,6 @@ css = """
|
|
65 |
}
|
66 |
"""
|
67 |
|
68 |
-
|
69 |
with gr.Blocks(css=css) as demo:
|
70 |
with gr.Column(elem_id="col-container"):
|
71 |
gr.Markdown("# Flux Upscaled")
|
@@ -94,4 +97,8 @@ with gr.Blocks(css=css) as demo:
|
|
94 |
fn=gen,
|
95 |
inputs=[prompt, lora_add, lora_word, width, height, scales, steps, seed, upscale_factor, process_upscale],
|
96 |
outputs=[output_res]
|
97 |
-
)
|
|
|
|
|
|
|
|
|
|
13 |
from gradio_imageslider import ImageSlider
|
14 |
|
15 |
|
16 |
+
# Configuración inicial
|
17 |
translator = Translator()
|
18 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
19 |
basemodel = "black-forest-labs/FLUX.1-schnell"
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
|
21 |
|
22 |
|
23 |
+
# Función para habilitar LoRA
|
24 |
def enable_lora(lora_add):
|
25 |
return basemodel if not lora_add else lora_add
|
26 |
|
27 |
|
28 |
+
# Función asíncrona para generar imágenes
|
29 |
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
|
30 |
+
try:
|
31 |
+
if seed == -1:
|
32 |
+
seed = random.randint(0, MAX_SEED)
|
33 |
+
seed = int(seed)
|
34 |
+
text = str(translator.translate(prompt, 'English')) + "," + lora_word
|
35 |
+
client = AsyncInferenceClient()
|
36 |
image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
|
37 |
+
return image, seed
|
38 |
except Exception as e:
|
39 |
+
raise gr.Error(f"Error en {e}")
|
|
|
40 |
|
41 |
|
42 |
+
# Función asíncrona para generar imágenes y aplicar upscale
|
43 |
async def gen(prompt, lora_add, lora_word, width, height, scales, steps, seed, upscale_factor, process_upscale):
|
44 |
model = enable_lora(lora_add)
|
45 |
image, seed = await generate_image(prompt, model, lora_word, width, height, scales, steps, seed)
|
|
|
54 |
return [image_path, upscale_image]
|
55 |
|
56 |
|
57 |
+
# Función para aplicar upscale con Finegrain
|
58 |
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
59 |
client = Client("finegrain/finegrain-image-enhancer")
|
60 |
result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
|
61 |
return result[1]
|
62 |
|
63 |
|
64 |
+
# Configuración de CSS
|
65 |
css = """
|
66 |
#col-container{
|
67 |
margin: 0 auto;
|
|
|
69 |
}
|
70 |
"""
|
71 |
|
|
|
72 |
with gr.Blocks(css=css) as demo:
|
73 |
with gr.Column(elem_id="col-container"):
|
74 |
gr.Markdown("# Flux Upscaled")
|
|
|
97 |
fn=gen,
|
98 |
inputs=[prompt, lora_add, lora_word, width, height, scales, steps, seed, upscale_factor, process_upscale],
|
99 |
outputs=[output_res]
|
100 |
+
)
|
101 |
+
|
102 |
+
|
103 |
+
# Iniciar la aplicación
|
104 |
+
demo.launch()
|