salomonsky commited on
Commit
6bd865c
1 Parent(s): 61bff42

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +53 -32
app.py CHANGED
@@ -17,52 +17,73 @@ MAX_SEED = np.iinfo(np.int32).max
17
  HF_TOKEN = os.environ.get("HF_TOKEN")
18
  HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
19
 
20
- if not os.path.exists('GFPGANv1.4.pth'): os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .")
 
21
 
22
  device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
23
  model_path = 'GFPGANv1.4.pth'
24
  gfpgan = GFPGANer(model_path=model_path, upscale_factor=4, arch='clean', channel_multiplier=2, model_name='GPFGAN', device=device)
25
 
26
  async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
27
- try:
28
- if seed == -1: seed = random.randint(0, MAX_SEED); seed = int(seed)
29
- text = str(Translator().translate(prompt, 'English')) + "," + lora_word
30
- client = AsyncInferenceClient()
31
- image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
32
- return image, seed
33
- except Exception as e: print(f"Error generating image: {e}"); return None, None
 
 
 
 
34
 
35
  def get_upscale_gfpgan(prompt, img_path):
36
- try: return gfpgan.enhance(img_path)
37
- except Exception as e: print(f"Error upscale image: {e}"); return None
 
 
 
 
38
 
39
  def get_upscale_finegrain(prompt, img_path, upscale_factor):
40
- try:
41
- client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
42
- result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
43
- return result[1]
44
- except Exception as e: print(f"Error upscale image: {e}"); return None
 
 
45
 
46
  async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora, upscale_model):
47
- model = enable_lora(lora_model, basemodel) if process_lora else basemodel
48
- image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
49
- if image is None: return [None, None]
50
- image_path = "temp_image.jpg"; image.save(image_path, format="JPEG")
51
- if process_upscale:
52
- if upscale_model == "GPFGAN": upscale_image = get_upscale_gfpgan(prompt, image_path)
53
- elif upscale_model == "Finegrain": upscale_image = get_upscale_finegrain(prompt, image_path, upscale_factor)
54
- upscale_image_path = "upscale_image.jpg"; upscale_image.save(upscale_image_path, format="JPEG")
55
- return [image_path, upscale_image_path]
56
- else: return [image_path, image_path]
 
 
 
 
 
 
 
 
 
 
57
 
58
- css = """#col-container{ margin: 0 auto; max-width: 1024px;}"""
59
  with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
60
- with gr.Column(elem_id="col-container"):
61
- with gr.Row():
62
- with gr.Column(scale=3): output_res = ImageSlider(label="Flux / Upscaled")
63
- with gr.Column(scale=2):
64
- prompt = gr.Textbox(label="Descripción de imágen")
65
- basemodel_choice = gr.Dropdown(label="Modelo", choices=["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV"], value="black-forest-labs/FLUX.1-schnell")
 
66
  lora_model_choice = gr.Dropdown(label="LORA Realismo", choices=["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora"], value="XLabs-AI/flux-RealismLora")
67
  process_lora = gr.Checkbox(label="Procesar LORA")
68
  process_upscale = gr.Checkbox(label="Procesar Escalador")
 
17
  HF_TOKEN = os.environ.get("HF_TOKEN")
18
  HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
19
 
20
+ if not os.path.exists('GFPGANv1.4.pth'):
21
+ os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .")
22
 
23
  device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
24
  model_path = 'GFPGANv1.4.pth'
25
  gfpgan = GFPGANer(model_path=model_path, upscale_factor=4, arch='clean', channel_multiplier=2, model_name='GPFGAN', device=device)
26
 
27
  async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
28
+ try:
29
+ if seed == -1:
30
+ seed = random.randint(0, MAX_SEED)
31
+ seed = int(seed)
32
+ text = str(Translator().translate(prompt, 'English')) + "," + lora_word
33
+ client = AsyncInferenceClient()
34
+ image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
35
+ return image, seed
36
+ except Exception as e:
37
+ print(f"Error generating image: {e}")
38
+ return None, None
39
 
40
  def get_upscale_gfpgan(prompt, img_path):
41
+ try:
42
+ img = gfpgan.enhance(img_path)
43
+ return img
44
+ except Exception as e:
45
+ print(f"Error upscale image: {e}")
46
+ return None
47
 
48
  def get_upscale_finegrain(prompt, img_path, upscale_factor):
49
+ try:
50
+ client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
51
+ result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
52
+ return result[1]
53
+ except Exception as e:
54
+ print(f"Error upscale image: {e}")
55
+ return None
56
 
57
  async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora, upscale_model):
58
+ model = enable_lora(lora_model, basemodel) if process_lora else basemodel
59
+ image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
60
+ if image is None:
61
+ return [None, None]
62
+ image_path = "temp_image.jpg"
63
+ image.save(image_path, format="JPEG")
64
+ if process_upscale:
65
+ if upscale_model == "GPFGAN":
66
+ upscale_image = get_upscale_gfpgan(prompt, image_path)
67
+ elif upscale_model == "Finegrain":
68
+ upscale_image = get_upscale_finegrain(prompt, image_path, upscale_factor)
69
+ upscale_image_path = "upscale_image.jpg"
70
+ upscale_image.save(upscale_image_path, format="JPEG")
71
+ return [image_path, upscale_image_path]
72
+ else:
73
+ return [image_path, image_path]
74
+
75
+ css = """
76
+ #col-container{ margin: 0 auto; max-width: 1024px;}
77
+ """
78
 
 
79
  with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
80
+ with gr.Column(elem_id="col-container"):
81
+ with gr.Row():
82
+ with gr.Column(scale=3):
83
+ output_res = ImageSlider(label="Flux / Upscaled")
84
+ with gr.Column(scale=2):
85
+ prompt = gr.Textbox(label="Descripción de imágen")
86
+ basemodel_choice = gr.Dropdown(label="Modelo", choices=["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV"], value="black-forest-labs/FLUX.1-schnell")
87
  lora_model_choice = gr.Dropdown(label="LORA Realismo", choices=["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora"], value="XLabs-AI/flux-RealismLora")
88
  process_lora = gr.Checkbox(label="Procesar LORA")
89
  process_upscale = gr.Checkbox(label="Procesar Escalador")