Spaces:
Configuration error
Configuration error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
HF_TOKEN = os.getenv('HF_TOKEN')
|
5 |
+
hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "Rick-bot-flags")
|
6 |
+
|
7 |
+
title = "Talk To Me Morty"
|
8 |
+
description = """
|
9 |
+
<p>
|
10 |
+
<center>
|
11 |
+
The bot was trained on Rick and Morty dialogues Kaggle Dataset using DialoGPT.
|
12 |
+
<img src="https://huggingface.co/spaces/kingabzpro/Rick_and_Morty_Bot/resolve/main/img/rick.png" alt="rick" width="200"/>
|
13 |
+
</center>
|
14 |
+
</p>
|
15 |
+
"""
|
16 |
+
article = "<p style='text-align: center'><a href='https://medium.com/geekculture/discord-bot-using-dailogpt-and-huggingface-api-c71983422701' target='_blank'>Complete Tutorial</a></p><p style='text-align: center'><a href='https://dagshub.com/kingabzpro/DailoGPT-RickBot' target='_blank'>Project is Available at DAGsHub</a></p></center></p>"
|
17 |
+
|
18 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
19 |
+
import torch
|
20 |
+
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained("ericzhou/DialoGPT-Medium-Rick_v2")
|
22 |
+
model = AutoModelForCausalLM.from_pretrained("ericzhou/DialoGPT-Medium-Rick_v2")
|
23 |
+
|
24 |
+
def predict(input, history=[]):
|
25 |
+
# tokenize the new input sentence
|
26 |
+
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
|
27 |
+
|
28 |
+
# append the new user input tokens to the chat history
|
29 |
+
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
|
30 |
+
|
31 |
+
# generate a response
|
32 |
+
history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()
|
33 |
+
|
34 |
+
# convert the tokens to text, and then split the responses into the right format
|
35 |
+
response = tokenizer.decode(history[0]).split("<|endoftext|>")
|
36 |
+
response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list
|
37 |
+
return response, history
|
38 |
+
|
39 |
+
gr.Interface(fn = predict, inputs = ["textbox","state"], outputs = ["chatbot","state"],allow_flagging = "manual",title = title, flagging_callback = hf_writer, description = description, article = article ).launch(enable_queue=True) # customizes the input component
|
40 |
+
|
41 |
+
#theme ="grass",
|
42 |
+
#title = title,
|
43 |
+
#flagging_callback=hf_writer,
|
44 |
+
#description = description,
|
45 |
+
#article = article
|