File size: 5,934 Bytes
3672502
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import os
import random
import json
from PIL import Image
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from pycocotools import mask
from transformers import CLIPImageProcessor

from VisualSearch.model.llava import conversation as conversation_lib


from transformers import OwlViTProcessor

from VisualSearch.utils.utils import box_xyxy_to_cxcywh, expand2square
from VisualSearch.utils.utils import ANSWER_LIST, SHORT_QUESTION_LIST


class MixedGroundingDataset(torch.utils.data.Dataset):
    pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1)
    pixel_std = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1)
    img_size = 1024
    ignore_label = 255

    def __init__(
        self,
        base_dir,
        tokenizer,
        vision_tower,
        samples_per_epoch=500 * 8 * 2 * 10,
        precision: str = "fp32",
        num_classes_per_sample: int = 3,
        exclude_val=False,
    ):
        self.samples_per_epoch = samples_per_epoch
        self.num_classes_per_sample = num_classes_per_sample

        self.base_dir = base_dir
        self.tokenizer = tokenizer
        self.precision = precision
        self.transform = OwlViTProcessor.from_pretrained("google/owlvit-base-patch16")
        self.clip_image_processor = CLIPImageProcessor.from_pretrained(vision_tower)

        self.short_question_list = SHORT_QUESTION_LIST
        self.answer_list = ANSWER_LIST

        with open(os.path.join(base_dir, 'MixedGrounding', 'goldG_train.json')) as f:
            self.images = json.load(f)

    def __len__(self):
        return self.samples_per_epoch

    def preprocess(self, x: torch.Tensor) -> torch.Tensor:
        """Normalize pixel values and pad to a square input."""
        # Normalize colors
        x = (x - self.pixel_mean) / self.pixel_std

        # Pad
        h, w = x.shape[-2:]
        padh = self.img_size - h
        padw = self.img_size - w
        x = F.pad(x, (0, padw, 0, padh))
        return x

    def __getitem__(self, idx):

        idx = random.randint(0, len(self.images) - 1)
        image_info = self.images[idx]
        image_data_source = image_info['data_source']
        file_name = image_info["file_name"]
        assert image_data_source in ['coco', 'vg', 'flickr']
        if image_data_source == 'coco':
            image_path = os.path.join(self.base_dir, 'coco2014/train2014', file_name)
        elif image_data_source == 'vg':
            image_path = os.path.join(self.base_dir, 'MixedGrounding/GQA/images', file_name)
        else:
            image_path = os.path.join(self.base_dir, 'MixedGrounding/flickr30k-images', file_name)
        caption = image_info['caption']
        instances = image_info['instances']
        if len(instances) == 0:
            return self.__getitem__(0)

        if len(instances) >= self.num_classes_per_sample:
            sampled_inds = np.random.choice(
                list(range(len(instances))), size=self.num_classes_per_sample, replace=False
            )
        else:
            sampled_inds = list(range(len(instances)))

        sampled_classes = sampled_inds
        
        image = cv2.imread(image_path)
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

        # preprocess image for clip
        image_clip = self.clip_image_processor.preprocess(
                expand2square(Image.open(image_path).convert('RGB'), tuple(int(x*255) for x in self.clip_image_processor.image_mean)), return_tensors="pt")["pixel_values"][0]
        original_size = image.shape[:2]
        image = self.transform(images=image, return_tensors="pt")['pixel_values'][0]
        resize = image.shape[:2]

        questions = []
        answers = []
        bboxes_labels = []
        for sample_ind in sampled_inds:
            text = []
            tokens_positive = instances[sample_ind]['tokens_positive']
            for token in tokens_positive:
                text.append(caption[token[0]:token[1]])
            text = " ".join(text)
            text = text.strip()
            question_template = random.choice(self.short_question_list)
            questions.append(question_template.format(class_name=text.lower()))
            answers.append(random.choice(self.answer_list))

            cur_bboxes = [instances[sample_ind]['bbox']]
            cur_bboxes = torch.tensor(cur_bboxes).view(-1, 4)
            # xywh to x1y1x2y2
            cur_bboxes[:, 2:] += cur_bboxes[:, :2]
            cur_bboxes[:, 0::2].clamp_(min=0, max=original_size[1])
            cur_bboxes[:, 1::2].clamp_(min=0, max=original_size[0])
            keep = (cur_bboxes[:, 3] > cur_bboxes[:, 1]) & (cur_bboxes[:, 2] > cur_bboxes[:, 0])
            cur_bboxes = cur_bboxes[keep]
            cur_bboxes = box_xyxy_to_cxcywh(cur_bboxes)
            cur_bboxes = cur_bboxes / torch.tensor([original_size[1], original_size[0], original_size[1], original_size[0]], dtype=torch.float32)
            if len(cur_bboxes) == 0:
                return self.__getitem__(0)
            bboxes_labels.append(cur_bboxes)

        conversations = []
        conv = conversation_lib.default_conversation.copy()

        i = 0
        while i < len(questions):
            conv.messages = []
            conv.append_message(conv.roles[0], questions[i])
            conv.append_message(conv.roles[1], answers[i])
            conversations.append(conv.get_prompt())
            i += 1
            
        bboxes_valid = [1]*len(bboxes_labels)
        masks_valid = [0]*len(bboxes_labels)
        masks = torch.rand(len(bboxes_labels), *original_size)
        label = torch.ones(original_size) * self.ignore_label

        return (
            image_path,
            image,
            image_clip,
            conversations,
            masks,
            label,
            bboxes_labels,
            bboxes_valid,
            masks_valid,
            resize,
            questions,
            sampled_classes,
        )