Spaces:
Runtime error
Runtime error
File size: 12,562 Bytes
b11ae09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
import argparse
import os
import json
from tqdm import tqdm
from collections import defaultdict
from copy import deepcopy
from PIL import Image
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from LLaVA.llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
from LLaVA.llava.conversation import conv_templates, SeparatorStyle
from LLaVA.llava.model.builder import load_pretrained_model
from LLaVA.llava.utils import disable_torch_init
from LLaVA.llava.mm_utils import get_model_name_from_path, KeywordsStoppingCriteria, tokenizer_image_object_token
from visual_search import parse_args, VSM, visual_search
def normalize_bbox(bbox, image_width, image_height):
normalized_bbox = [bbox[0]/image_width, bbox[1]/image_height, (bbox[0]+bbox[2])/image_width, (bbox[1]+bbox[3])/image_height]
normalized_bbox = [np.clip(_, 0, 1) for _ in normalized_bbox]
return normalized_bbox
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img, 0, 0
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result, 0, (width - height) // 2
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result, (height - width) // 2, 0
class VQA_LLM:
def __init__(self, args):
disable_torch_init()
model_path = args.vqa_model_path
model_name = get_model_name_from_path(model_path)
model_name += 'llava'
model_base = None
device_map = "auto"
self.tokenizer, self.model, self.image_processor, self.context_len = load_pretrained_model(model_path, model_base, model_name)
self.conv_type = args.conv_type
def get_patch(self, bbox, image_width, image_height, patch_size=224, patch_scale=None):
object_width = int(np.ceil(bbox[2]))
object_height = int(np.ceil(bbox[3]))
object_center_x = int(bbox[0] + bbox[2]/2)
object_center_y = int(bbox[1] + bbox[3]/2)
if patch_scale is None:
patch_width = max(object_width, patch_size)
patch_height = max(object_height, patch_size)
else:
patch_width = int(object_width*patch_scale)
patch_height = int(object_height*patch_scale)
left = max(0, object_center_x-patch_width//2)
right = min(left+patch_width, image_width)
top = max(0, object_center_y-patch_height//2)
bottom = min(top+patch_height, image_height)
return [left, top, right, bottom]
def get_object_crop(self, image, bbox, patch_scale):
resized_bbox = self.get_patch(bbox, image.width, image.height, patch_scale=patch_scale)
object_crop = image.crop((resized_bbox[0], resized_bbox[1], resized_bbox[2], resized_bbox[3]))
object_crop = object_crop.resize((self.image_processor.crop_size['width'],self.image_processor.crop_size['height']))
object_crop = self.image_processor.preprocess(object_crop, return_tensors='pt')['pixel_values'][0]
return object_crop
@torch.inference_mode()
def free_form_inference(self, image, question, temperature=0, top_p=None, num_beams=1, max_new_tokens=200, object_crops=None, images_long=None, objects_long=None):
conv = conv_templates[self.conv_type].copy()
qs = DEFAULT_IMAGE_TOKEN + '\n' + question
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
input_ids = tokenizer_image_object_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
image_tensor = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
stopping_criteria = KeywordsStoppingCriteria(keywords, self.tokenizer, input_ids)
output_ids = self.model.generate(
input_ids,
images=image_tensor.unsqueeze(0).half().cuda(),
object_features=object_crops.half().cuda() if object_crops is not None else None,
images_long = images_long,
objects_long = objects_long,
do_sample= True if temperature > 0 else False,
num_beams=num_beams,
temperature=temperature,
top_p = top_p,
max_new_tokens=max_new_tokens,
use_cache=True,
stopping_criteria=[stopping_criteria])
input_token_len = input_ids.shape[1]
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
if n_diff_input_output > 0:
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
outputs = self.tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
outputs = outputs.strip()
if outputs.endswith(stop_str):
outputs = outputs[:-len(stop_str)]
outputs = outputs.strip()
return outputs
@torch.inference_mode()
def multiple_choices_inference(self, image, question, options, object_crops=None, images_long=None, objects_long=None):
conv = conv_templates[self.conv_type].copy()
qs = DEFAULT_IMAGE_TOKEN + '\n' + question
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
question_input_ids = tokenizer_image_object_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
image_tensor = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
output_question = self.model(
question_input_ids,
use_cache=True,
images=image_tensor.unsqueeze(0).half().cuda(),
object_features=object_crops.half().cuda() if object_crops is not None else None,
images_long = images_long,
objects_long = objects_long)
question_logits = output_question.logits
question_past_key_values = output_question.past_key_values
loss_list = []
for option in options:
conv = conv_templates[self.conv_type].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], option)
full_prompt = conv.get_prompt()
full_input_ids = tokenizer_image_object_token(full_prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
option_answer_input_ids = full_input_ids[:, question_input_ids.shape[1]:]
output_option = self.model(input_ids=option_answer_input_ids,
use_cache=True,
attention_mask=torch.ones(1, question_logits.shape[1]+option_answer_input_ids.shape[1], device=full_input_ids.device),
past_key_values=question_past_key_values)
logits = torch.cat([question_logits[:, -1:], output_option.logits[:, :-1]], 1)
loss_fct = CrossEntropyLoss()
logits = logits.view(-1, self.model.config.vocab_size)
labels = option_answer_input_ids.view(-1)
loss = loss_fct(logits, labels)
loss_list.append(loss)
option_chosen = torch.stack(loss_list).argmin()
return option_chosen.cpu().item()
def eval_model(args):
# init VQA LLM
vqa_llm = VQA_LLM(args)
# init VSM
vsm_args = parse_args({})
vsm_args.version = args.vsm_model_path
vsm = VSM(vsm_args)
results = {}
per_type_acc = defaultdict(list)
all_acc = []
missing_objects_msg = "Sorry, I can not answer the question. Some visual information about the following objects is missing or unclear:"
focus_msg = "Additional visual information to focus on: "
for test_type in ['direct_attributes', 'relative_position']:
results[test_type] = []
folder = os.path.join(args.benchmark_folder, test_type)
image_files = list(filter(lambda file: '.json' not in file, os.listdir(folder)))
for image_file in tqdm(image_files):
result_single_sample = {}
image_path = os.path.join(folder, image_file)
annotation_path = image_path.split('.')[0] + '.json'
image = Image.open(image_path).convert('RGB')
annotation = json.load(open(annotation_path))
image, _, _ = expand2square(image, tuple(int(x*255) for x in vqa_llm.image_processor.image_mean))
question = annotation['question']
# generate free-form response to check whether visual search needs to be activated
prediction = vqa_llm.free_form_inference(image, question)
missing_objects = []
if missing_objects_msg in prediction:
missing_objects = prediction.split(missing_objects_msg)[-1]
if missing_objects.endswith('.'):
missing_objects = missing_objects[:-1]
missing_objects = missing_objects.split(',')
missing_objects = [missing_object.strip() for missing_object in missing_objects]
search_result = []
if len(missing_objects) > 0:
# visual search
for object_name in missing_objects:
image = Image.open(image_path).convert('RGB')
smallest_size = max(int(np.ceil(min(image.width, image.height)/args.minimum_size_scale)), args.minimum_size)
final_step, path_length, search_successful, all_valid_boxes = visual_search(vsm, image, object_name, target_bbox=None, smallest_size=smallest_size)
if all_valid_boxes is not None:
# might exist multiple target instances
for search_bbox in all_valid_boxes:
search_final_patch = final_step['bbox']
search_bbox[0] += search_final_patch[0]
search_bbox[1] += search_final_patch[1]
search_result.append({'bbox':search_bbox.tolist(),'name':object_name})
else:
search_bbox = final_step['detection_result']
search_final_patch = final_step['bbox']
search_bbox[0] += search_final_patch[0]
search_bbox[1] += search_final_patch[1]
search_result.append({'bbox':search_bbox.tolist(),'name':object_name})
# predict the multiple-choice option
options = annotation['options']
image = Image.open(image_path).convert('RGB')
if len(missing_objects) > 0:
object_names = [_['name'] for _ in search_result]
bboxs = deepcopy([_['bbox'] for _ in search_result])
if len(object_names) <= 2:
images_long = [False]
objects_long = [True]*len(object_names)
else:
images_long = [False]
objects_long = [False]*len(object_names)
object_crops = []
for bbox in bboxs:
object_crop = vqa_llm.get_object_crop(image, bbox, patch_scale=1.2)
object_crops.append(object_crop)
object_crops = torch.stack(object_crops, 0)
image, left, top = expand2square(image, tuple(int(x*255) for x in vqa_llm.image_processor.image_mean))
bbox_list = []
for bbox in bboxs:
bbox[0] += left
bbox[1] += top
bbox_list.append(bbox)
bbox_list = [normalize_bbox(bbox, image.width, image.height) for bbox in bbox_list]
cur_focus_msg = focus_msg
for i, (object_name, bbox) in enumerate(zip(object_names, bbox_list)):
cur_focus_msg = cur_focus_msg + "{} <object> at location [{:.3f},{:.3f},{:.3f},{:.3f}]".format(object_name, bbox[0], bbox[1], bbox[2], bbox[3])
if i != len(bbox_list)-1:
cur_focus_msg = cur_focus_msg+"; "
else:
cur_focus_msg = cur_focus_msg +'.'
question_with_focus = cur_focus_msg+"\n"+question
option_chosen = vqa_llm.multiple_choices_inference(image, question_with_focus, options, object_crops, images_long=images_long, objects_long=objects_long)
else:
option_chosen = vqa_llm.multiple_choices_inference(image, question, options)
correct = 1 if option_chosen==0 else 0
per_type_acc[test_type].append(correct)
all_acc.append(correct)
result_single_sample['question'] = question
result_single_sample['options'] = options
result_single_sample['image'] = image_file
result_single_sample['prediction_freeform'] = prediction
result_single_sample['missing_objects'] = missing_objects
result_single_sample['search_result'] = search_result
result_single_sample['option_chosen'] = option_chosen
result_single_sample['correct'] = correct
results[test_type].append(result_single_sample)
print(test_type, np.mean(per_type_acc[test_type]))
print(np.mean(all_acc))
with open(args.output_path, 'w') as f:
json.dump(results, f, indent=4)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--vqa-model-path", type=str, default="craigwu/seal_vqa_7b")
parser.add_argument("--vqa-model-base", type=str, default=None)
parser.add_argument("--conv_type", default="v1", type=str,)
parser.add_argument("--benchmark-folder", type=str, default="vstar_bench")
parser.add_argument("--vsm-model-path", type=str, default="craigwu/seal_vsm_7b")
parser.add_argument("--output-path", type=str, default="eval_result.json")
parser.add_argument("--minimum_size_scale", default=4.0, type=float, help="minimum sub-image scale for the termination of search")
parser.add_argument("--minimum_size", default=224, type=int, help="minimum sub-image size for the termination of search")
args = parser.parse_args()
eval_model(args) |