Spaces:
Runtime error
Runtime error
from typing import List | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from VisualSearch.model.llava.model.language_model.llava_llama import (LlavaLlamaForCausalLM, | |
LlavaLlamaModel) | |
from .segment_anything.modeling import PromptEncoder, MaskDecoder, TwoWayTransformer | |
from .owlvit.owlvit import OwlViT | |
def dice_loss( | |
inputs: torch.Tensor, | |
targets: torch.Tensor, | |
num_masks: float, | |
scale=1000, # 100000.0, | |
eps=1e-6, | |
): | |
""" | |
Compute the DICE loss, similar to generalized IOU for masks | |
Args: | |
inputs: A float tensor of arbitrary shape. | |
The predictions for each example. | |
targets: A float tensor with the same shape as inputs. Stores the binary | |
classification label for each element in inputs | |
(0 for the negative class and 1 for the positive class). | |
""" | |
inputs = inputs.sigmoid() | |
inputs = inputs.flatten(1, 2) | |
targets = targets.flatten(1, 2) | |
numerator = 2 * (inputs / scale * targets).sum(-1) | |
denominator = (inputs / scale).sum(-1) + (targets / scale).sum(-1) | |
loss = 1 - (numerator + eps) / (denominator + eps) | |
loss = loss / (num_masks + 1e-8) | |
return loss | |
def sigmoid_ce_loss( | |
inputs: torch.Tensor, | |
targets: torch.Tensor, | |
num_masks: float, | |
): | |
""" | |
Args: | |
inputs: A float tensor of arbitrary shape. | |
The predictions for each example. | |
targets: A float tensor with the same shape as inputs. Stores the binary | |
classification label for each element in inputs | |
(0 for the negative class and 1 for the positive class). | |
Returns: | |
Loss tensor | |
""" | |
loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none") | |
loss = loss.flatten(1, 2).mean(1) / (num_masks + 1e-8) | |
return loss | |
class VSMMetaModel: | |
def __init__( | |
self, | |
config, | |
**kwargs, | |
): | |
super(VSMMetaModel, self).__init__(config) | |
self.config = config | |
if not hasattr(self.config, "train_mask_decoder"): | |
self.config.train_mask_decoder = kwargs["train_mask_decoder"] | |
self.config.out_dim = kwargs["out_dim"] | |
else: | |
is_eval = kwargs.get('is_eval', False) | |
self.initialize_lisa_modules(self.config, is_eval) | |
def initialize_lisa_modules(self, config, is_eval=False): | |
# OWL-ViT | |
self.owlvit = OwlViT(1, is_eval) | |
self.owlvit.train() | |
for param in self.owlvit.parameters(): | |
param.requires_grad = True | |
for param in self.owlvit.vision_model.parameters(): | |
param.requires_grad = False | |
self.owlvit.vision_model.eval() | |
for param in self.owlvit.box_head.parameters(): | |
param.requires_grad = False | |
self.visual_projection = nn.Linear(self.owlvit.vision_model.config.hidden_size, 256, bias=False) | |
for param in self.visual_projection.parameters(): | |
param.requires_grad = True | |
self.prompt_encoder=PromptEncoder( | |
embed_dim=256, | |
image_embedding_size=(48, 48), | |
input_image_size=(768, 768), | |
mask_in_chans=16, | |
) | |
self.prompt_encoder.train() | |
for param in self.prompt_encoder.parameters(): | |
param.requires_grad = True | |
self.mask_decoder=MaskDecoder( | |
num_multimask_outputs=3, | |
transformer=TwoWayTransformer( | |
depth=2, | |
embedding_dim=256, | |
mlp_dim=2048, | |
num_heads=8, | |
), | |
transformer_dim=256, | |
iou_head_depth=3, | |
iou_head_hidden_dim=256, | |
) | |
self.mask_decoder.train() | |
for param in self.mask_decoder.parameters(): | |
param.requires_grad = True | |
# Projection layer | |
in_dim = config.hidden_size | |
out_dim = config.out_dim | |
text_fc_det = [ | |
nn.Linear(in_dim, in_dim), | |
nn.ReLU(inplace=True), | |
nn.Linear(in_dim, out_dim), | |
nn.Dropout(0.0), | |
] | |
self.text_hidden_fcs_det = nn.ModuleList([nn.Sequential(*text_fc_det)]) | |
self.text_hidden_fcs_det.train() | |
for param in self.text_hidden_fcs_det.parameters(): | |
param.requires_grad = True | |
text_fc_seg = [ | |
nn.Linear(in_dim, in_dim), | |
nn.ReLU(inplace=True), | |
nn.Linear(in_dim, 256), | |
nn.Dropout(0.0), | |
] | |
self.text_hidden_fcs_seg = nn.ModuleList([nn.Sequential(*text_fc_seg)]) | |
self.text_hidden_fcs_seg.train() | |
for param in self.text_hidden_fcs_seg.parameters(): | |
param.requires_grad = True | |
class VSMModel(VSMMetaModel, LlavaLlamaModel): | |
def __init__( | |
self, | |
config, | |
**kwargs, | |
): | |
super(VSMModel, self).__init__(config, **kwargs) | |
self.config.use_cache = False | |
self.config.vision_tower = self.config.mm_vision_tower | |
self.config.mm_vision_select_feature = "patch" | |
self.config.image_aspect_ratio = "square" | |
self.config.image_grid_pinpoints = None | |
self.config.tune_mm_mlp_adapter = False | |
self.config.freeze_mm_mlp_adapter = True | |
self.config.pretrain_mm_mlp_adapter = None | |
self.config.mm_use_im_patch_token = False | |
class VSMForCausalLM(LlavaLlamaForCausalLM): | |
def __init__( | |
self, | |
config, | |
**kwargs, | |
): | |
if not hasattr(config, "train_mask_decoder"): | |
config.mm_use_im_start_end = kwargs.pop("use_mm_start_end", True) | |
config.mm_vision_tower = kwargs.get( | |
"vision_tower", "openai/clip-vit-large-patch14" | |
) | |
self.ce_loss_weight = kwargs.pop("ce_loss_weight", None) | |
self.dice_loss_weight = kwargs.pop("dice_loss_weight", None) | |
self.bce_loss_weight = kwargs.pop("bce_loss_weight", None) | |
self.det_loss_weight = kwargs.pop("det_loss_weight", None) | |
else: | |
config.mm_vision_tower = config.vision_tower | |
self.loc_token_idx = kwargs.pop("loc_token_idx") | |
super().__init__(config) | |
self.model = VSMModel(config, **kwargs) | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_visual_embs(self, pixel_values: torch.FloatTensor): | |
with torch.no_grad(): | |
image_embeddings = self.model.owlvit.get_visual_embs(pixel_values) | |
return image_embeddings | |
def forward(self, **kwargs): | |
if "past_key_values" in kwargs: | |
return super().forward(**kwargs) | |
return self.model_forward(**kwargs) | |
def model_forward( | |
self, | |
images: torch.FloatTensor, | |
images_clip: torch.FloatTensor, | |
input_ids: torch.LongTensor, | |
labels: torch.LongTensor, | |
attention_masks: torch.LongTensor, | |
offset: torch.LongTensor, | |
masks_list: List[torch.FloatTensor], | |
label_list: List[torch.Tensor], | |
bboxes_labels_list: List[torch.FloatTensor], | |
bboxes_valid_list: torch.Tensor, | |
masks_valid_list: List[torch.Tensor], | |
resize_list: List[tuple], | |
inference: bool = False, | |
**kwargs, | |
): | |
image_embeddings = self.get_visual_embs(images) | |
batch_size = image_embeddings.shape[0] | |
assert batch_size == len(offset) - 1 | |
loc_token_mask = input_ids[:, 1:] == self.loc_token_idx | |
loc_token_mask = torch.cat( | |
[ | |
loc_token_mask, | |
torch.zeros((loc_token_mask.shape[0], 1)).bool().cuda(), | |
], | |
dim=1, | |
) | |
# hack for IMAGE_TOKEN_INDEX (we suppose that there is only one image, and it is in the front) | |
loc_token_mask = torch.cat( | |
[torch.zeros((loc_token_mask.shape[0], 255)).bool().cuda(), loc_token_mask], | |
dim=1, | |
) | |
if inference: | |
n_batch = 1 | |
length = input_ids.shape[0] | |
assert images_clip.shape[0] == 1 | |
images_clip_extend = images_clip.expand(length, -1, -1, -1).contiguous() | |
output_hidden_states = [] | |
for i in range(n_batch): | |
start_i, end_i = i * length, min((i + 1) * length, input_ids.shape[0]) | |
output_i = super().forward( | |
images=images_clip_extend[: end_i - start_i], | |
attention_mask=attention_masks[start_i:end_i], | |
input_ids=input_ids[start_i:end_i], | |
output_hidden_states=True, | |
) | |
output_hidden_states.append(output_i.hidden_states) | |
torch.cuda.empty_cache() | |
output_hidden_states_list = [] | |
output_hidden_states_level = torch.cat(output_hidden_states, dim=0) | |
output_hidden_states_list.append(output_hidden_states_level) | |
output_hidden_states = output_hidden_states_list | |
output = None | |
else: | |
images_clip_list = [] | |
for i in range(len(offset) - 1): | |
start_i, end_i = offset[i], offset[i + 1] | |
images_clip_i = ( | |
images_clip[i] | |
.unsqueeze(0) | |
.expand(end_i - start_i, -1, -1, -1) | |
.contiguous() | |
) | |
images_clip_list.append(images_clip_i) | |
images_clip = torch.cat(images_clip_list, dim=0) | |
output = super().forward( | |
images=images_clip, | |
attention_mask=attention_masks, | |
input_ids=input_ids, | |
labels=labels, | |
output_hidden_states=True, | |
) | |
output_hidden_states = output.hidden_states | |
# seg | |
hidden_states_seg = [] | |
assert len(self.model.text_hidden_fcs_seg) == 1 | |
hidden_states_seg.append(self.model.text_hidden_fcs_seg[0](output_hidden_states[-1])) | |
last_hidden_state_seg = torch.stack(hidden_states_seg, dim=-1).sum(dim=-1) | |
# det | |
hidden_states_det = [] | |
assert len(self.model.text_hidden_fcs_det) == 1 | |
hidden_states_det.append(self.model.text_hidden_fcs_det[0](output_hidden_states[-1])) | |
last_hidden_state_det = torch.stack(hidden_states_det, dim=-1).sum(dim=-1) | |
pred_embeddings_seg = last_hidden_state_seg[loc_token_mask] | |
pred_embeddings_det = last_hidden_state_det[loc_token_mask] | |
loc_token_counts = loc_token_mask.int().sum(-1) # [bs, ] | |
loc_token_offset = loc_token_counts.cumsum(-1) | |
loc_token_offset = torch.cat( | |
[torch.zeros(1).long().cuda(), loc_token_offset], dim=0 | |
) | |
loc_token_offset = loc_token_offset[offset] | |
pred_embeddings_seg_ = [] | |
for i in range(len(loc_token_offset) - 1): | |
start_i, end_i = loc_token_offset[i], loc_token_offset[i + 1] | |
pred_embeddings_seg_.append(pred_embeddings_seg[start_i:end_i]) | |
pred_embeddings_seg = pred_embeddings_seg_ | |
pred_embeddings_det_ = [] | |
for i in range(len(loc_token_offset) - 1): | |
start_i, end_i = loc_token_offset[i], loc_token_offset[i + 1] | |
pred_embeddings_det_.append(pred_embeddings_det[start_i:end_i]) | |
pred_embeddings_det = pred_embeddings_det_ | |
# seg branch | |
multimask_output = False | |
pred_masks = [] | |
for i in range(len(pred_embeddings_seg)): | |
( | |
sparse_embeddings, | |
dense_embeddings, | |
) = self.model.prompt_encoder( | |
points=None, | |
boxes=None, | |
masks=None, | |
text_embeds=pred_embeddings_seg[i].unsqueeze(1), | |
) | |
sparse_embeddings = sparse_embeddings.to(pred_embeddings_seg[i].dtype) | |
low_res_masks, iou_predictions = self.model.mask_decoder( | |
image_embeddings=self.model.visual_projection(image_embeddings[i].unsqueeze(0)).permute(0, 3, 1, 2), | |
image_pe=self.model.prompt_encoder.get_dense_pe(), | |
sparse_prompt_embeddings=sparse_embeddings, | |
dense_prompt_embeddings=dense_embeddings, | |
multimask_output=multimask_output, | |
) | |
pred_mask = F.interpolate( | |
low_res_masks, label_list[i].shape, mode="bilinear", align_corners=False | |
) | |
pred_masks.append(pred_mask[:, 0]) | |
gt_masks = masks_list | |
# det branch | |
detection_result_batch = [] | |
for i in range(len(pred_embeddings_det)): | |
bs = pred_embeddings_det[i].shape[0] | |
detection_result = self.model.owlvit(image_embeddings[i].unsqueeze(0).repeat(bs, 1, 1, 1), pred_embeddings_det[i].unsqueeze(1)) | |
detection_result_batch.append(detection_result) | |
pred_logits = torch.cat([detection_result['pred_logits'] for detection_result in detection_result_batch], 0) | |
pred_boxes = torch.cat([detection_result['pred_boxes'] for detection_result in detection_result_batch], 0) | |
if inference: | |
return { | |
"pred_masks": pred_masks, | |
"gt_masks": gt_masks, | |
"pred_logits": pred_logits, | |
"pred_boxes": pred_boxes, | |
"gt_bboxes": bboxes_labels_list | |
} | |
num_boxes = 0 | |
for bboxes_labels, bboxes_valid in zip(bboxes_labels_list, bboxes_valid_list): | |
if bboxes_valid: | |
num_boxes += len(bboxes_labels) | |
num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=image_embeddings.device) | |
num_boxes = torch.clamp(num_boxes, min=1).item() | |
detection_result_batch = {'pred_logits':pred_logits, 'pred_boxes':pred_boxes} | |
target_det = [] | |
all_bboxes_valid = [] | |
for bboxes_label, bboxes_valid in zip(bboxes_labels_list, bboxes_valid_list): | |
target_det.append({"labels":torch.zeros(len(bboxes_label)).to(bboxes_label.device, torch.long), "boxes":bboxes_label}) | |
if bboxes_valid: | |
all_bboxes_valid.append(torch.ones((min(24*24, len(bboxes_label)), 1)).to(bboxes_label.device, torch.long)) | |
else: | |
all_bboxes_valid.append(torch.zeros((min(24*24, len(bboxes_label)), 1)).to(bboxes_label.device, torch.long)) | |
all_bboxes_valid = torch.cat(all_bboxes_valid, 0) | |
loss_dict = self.model.owlvit.criterion(detection_result_batch, target_det, num_boxes) | |
for loss_k, loss_v in loss_dict.items(): | |
if "loss_ce" in loss_k: | |
loss_dict[loss_k] = (loss_v*bboxes_valid_list.unsqueeze(-1)).mean() | |
else: | |
loss_dict[loss_k] = (loss_v*all_bboxes_valid).sum() | |
weight_dict = self.model.owlvit.criterion.weight_dict | |
detection_loss = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict) | |
detection_loss = detection_loss*self.det_loss_weight | |
model_output = output | |
output = model_output.logits | |
ce_loss = model_output.loss | |
ce_loss = ce_loss * self.ce_loss_weight | |
mask_bce_loss = 0 | |
mask_dice_loss = 0 | |
num_masks = 0 | |
for batch_idx in range(len(pred_masks)): | |
gt_mask = gt_masks[batch_idx] | |
pred_mask = pred_masks[batch_idx] | |
masks_valid = masks_valid_list[batch_idx] | |
mask_bce_loss += ( | |
sigmoid_ce_loss(pred_mask, gt_mask, num_masks=gt_mask.shape[0]) | |
* gt_mask.shape[0] * masks_valid | |
).sum() | |
mask_dice_loss += ( | |
dice_loss(pred_mask, gt_mask, num_masks=gt_mask.shape[0]) | |
* gt_mask.shape[0] * masks_valid | |
).sum() | |
num_masks += masks_valid.sum() | |
mask_bce_loss = self.bce_loss_weight * mask_bce_loss / (num_masks + 1e-8) | |
mask_dice_loss = self.dice_loss_weight * mask_dice_loss / (num_masks + 1e-8) | |
mask_loss = mask_bce_loss + mask_dice_loss | |
loss = ce_loss + mask_loss + detection_loss | |
return { | |
"loss": loss, | |
"ce_loss": ce_loss, | |
"mask_bce_loss": mask_bce_loss, | |
"mask_dice_loss": mask_dice_loss, | |
"mask_loss": mask_loss, | |
"detection_loss": detection_loss, | |
"detection_loss_ce": loss_dict['loss_ce'], | |
"detection_loss_bbox": loss_dict['loss_bbox'], | |
"detection_loss_giou": loss_dict['loss_giou'], | |
} | |
def inference( | |
self, | |
images_clip, | |
images, | |
input_ids, | |
resize_list, | |
original_size_list, | |
max_new_tokens=32, | |
tokenizer=None, | |
mode = 'vqa' | |
): | |
assert mode in ['vqa', 'segmentation', 'detection'] | |
with torch.no_grad(): | |
outputs = self.generate( | |
images=images_clip, | |
input_ids=input_ids, | |
max_new_tokens=max_new_tokens, | |
num_beams=1, | |
output_hidden_states=True, | |
return_dict_in_generate=True, | |
) | |
output_hidden_states = outputs.hidden_states[-1] | |
output_ids = outputs.sequences | |
if mode == 'vqa': | |
return output_ids, None, None | |
loc_token_mask = output_ids[:, 1:] == self.loc_token_idx | |
# hack for IMAGE_TOKEN_INDEX (we suppose that there is only one image, and it is in the front) | |
loc_token_mask = torch.cat( | |
[ | |
torch.zeros((loc_token_mask.shape[0], 255)).bool().cuda(), | |
loc_token_mask, | |
], | |
dim=1, | |
) | |
# seg | |
hidden_states_seg = [] | |
assert len(self.model.text_hidden_fcs_seg) == 1 | |
hidden_states_seg.append(self.model.text_hidden_fcs_seg[0](output_hidden_states)) | |
last_hidden_state_seg = torch.stack(hidden_states_seg, dim=-1).sum(dim=-1) | |
# det | |
hidden_states_det = [] | |
assert len(self.model.text_hidden_fcs_det) == 1 | |
hidden_states_det.append(self.model.text_hidden_fcs_det[0](output_hidden_states)) | |
last_hidden_state_det = torch.stack(hidden_states_det, dim=-1).sum(dim=-1) | |
pred_embeddings_seg = last_hidden_state_seg[loc_token_mask] | |
pred_embeddings_det = last_hidden_state_det[loc_token_mask] | |
loc_token_counts = loc_token_mask.int().sum(-1) # [bs, ] | |
loc_token_offset = loc_token_counts.cumsum(-1) | |
loc_token_offset = torch.cat( | |
[torch.zeros(1).long().cuda(), loc_token_offset], dim=0 | |
) | |
pred_embeddings_seg_ = [] | |
for i in range(len(loc_token_offset) - 1): | |
start_i, end_i = loc_token_offset[i], loc_token_offset[i + 1] | |
pred_embeddings_seg_.append(pred_embeddings_seg[start_i:end_i]) | |
pred_embeddings_seg = pred_embeddings_seg_ | |
pred_embeddings_det_ = [] | |
for i in range(len(loc_token_offset) - 1): | |
start_i, end_i = loc_token_offset[i], loc_token_offset[i + 1] | |
pred_embeddings_det_.append(pred_embeddings_det[start_i:end_i]) | |
pred_embeddings_det = pred_embeddings_det_ | |
image_embeddings = self.get_visual_embs(images) | |
multimask_output = False | |
pred_masks = [] | |
for i in range(len(pred_embeddings_seg)): | |
( | |
sparse_embeddings, | |
dense_embeddings, | |
) = self.model.prompt_encoder( | |
points=None, | |
boxes=None, | |
masks=None, | |
text_embeds=pred_embeddings_seg[i].unsqueeze(1), | |
) | |
sparse_embeddings = sparse_embeddings.to(pred_embeddings_seg[i].dtype) | |
low_res_masks, iou_predictions = self.model.mask_decoder( | |
image_embeddings=self.model.visual_projection(image_embeddings[i].unsqueeze(0)).permute(0, 3, 1, 2), | |
image_pe=self.model.prompt_encoder.get_dense_pe(), | |
sparse_prompt_embeddings=sparse_embeddings, | |
dense_prompt_embeddings=dense_embeddings, | |
multimask_output=multimask_output, | |
) | |
pred_mask = F.interpolate( | |
low_res_masks.float(), original_size_list[i], mode="bilinear", align_corners=False | |
) | |
pred_masks.append(pred_mask[:, 0]) | |
if mode == 'segmentation': | |
return None, pred_masks, None | |
# detection model | |
detection_result_batch = [] | |
for i in range(len(pred_embeddings_det)): | |
bs = pred_embeddings_det[i].shape[0] | |
detection_result = self.model.owlvit(image_embeddings[i].unsqueeze(0).repeat(bs, 1, 1, 1), pred_embeddings_det[i].unsqueeze(1)) | |
detection_result_batch.append(detection_result) | |
pred_logits = torch.cat([detection_result['pred_logits'] for detection_result in detection_result_batch], 0) | |
pred_boxes = torch.cat([detection_result['pred_boxes'] for detection_result in detection_result_batch], 0) | |
detection_result_batch = {'pred_logits':pred_logits, 'pred_boxes':pred_boxes} | |
return None, pred_masks, detection_result_batch |