File size: 6,401 Bytes
8646273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import torch
import numpy as np

from scipy import signal
from scipy.signal import butter, lfilter, detrend

# Make bandpass filter
def butter_bandpass(lowcut, highcut, fs, order=5):
    nyq = 0.5 * fs  # Nyquist frequency
    low = lowcut / nyq  # Normalized frequency
    high = highcut / nyq
    b, a = butter(order, [low, high], btype="band")  # Bandpass filter
    return b, a


def butter_bandpass_filter(data, lowcut, highcut, fs, order=5):
    b, a = butter_bandpass(lowcut, highcut, fs, order=order)
    y = lfilter(b, a, data)
    return y


def rotate_waveform(waveform, angle):
    fft_waveform = np.fft.fft(waveform)  # Compute the Fourier transform of the waveform
    rotate_factor = np.exp(
        1j * angle
    )  # Create a complex exponential with the specified rotation angle
    rotated_fft_waveform = (
        fft_waveform * rotate_factor
    )  # Multiply the Fourier transform by the rotation factor
    rotated_waveform = np.fft.ifft(
        rotated_fft_waveform
    )  # Compute the inverse Fourier transform to get the rotated waveform in the time domain

    return rotated_waveform


def augment(sample):
    # SET PARAMETERS:
    crop_length = 6000
    padding = 120
    test = False

    waveform = sample["waveform.npy"]
    meta = sample["meta.json"]

    if meta["split"] != "train":
        test = True

    target_sample_P = meta["trace_p_arrival_sample"]
    target_sample_S = meta["trace_s_arrival_sample"]

    if target_sample_P is None:
        target_sample_P = 0
    if target_sample_S is None:
        target_sample_S = 0

    # Randomly select a phase to start the crop
    current_phases = [x for x in (target_sample_P, target_sample_S) if x > 0]
    phase_selector = np.random.randint(0, len(current_phases))
    first_phase = current_phases[phase_selector]

    # Shuffle
    if first_phase - (crop_length - padding) > padding:
        start_indx = int(
            first_phase
            - torch.randint(low=padding, high=(crop_length - padding), size=(1,))
        )
        if test == True:
            start_indx = int(first_phase - 2 * padding)

    elif int(first_phase - padding) > 0:
        start_indx = int(
            first_phase
            - torch.randint(low=0, high=(int(first_phase - padding)), size=(1,))
        )
        if test == True:
            start_indx = int(first_phase - padding)

    else:
        start_indx = padding

    end_indx = start_indx + crop_length

    if (waveform.shape[-1] - end_indx) < 0:
        start_indx += waveform.shape[-1] - end_indx
        end_indx = start_indx + crop_length

    # Update target
    new_target_P = target_sample_P - start_indx
    new_target_S = target_sample_S - start_indx

    # Cut
    waveform_cropped = waveform[:, start_indx:end_indx]

    # Preprocess
    waveform_cropped = detrend(waveform_cropped)
    waveform_cropped = butter_bandpass_filter(
        waveform_cropped, lowcut=0.2, highcut=40, fs=100, order=5
    )
    window = signal.windows.tukey(waveform_cropped[-1].shape[0], alpha=0.1)
    waveform_cropped = waveform_cropped * window
    waveform_cropped = detrend(waveform_cropped)

    if np.isnan(waveform_cropped).any() == True:
        waveform_cropped = np.zeros(shape=waveform_cropped.shape)

        new_target_P = 0
        new_target_S = 0

    if np.sum(waveform_cropped) == 0:

        new_target_P = 0
        new_target_S = 0

    # Normalize data
    max_val = np.max(np.abs(waveform_cropped))
    waveform_cropped_norm = waveform_cropped / max_val

    # Added Z component only
    if len(waveform_cropped_norm) < 3:
        zeros = np.zeros((3, waveform_cropped_norm.shape[-1]))
        zeros[0] = waveform_cropped_norm

        waveform_cropped_norm = zeros

    if test == False:
        ##### Rotate waveform #####
        probability = torch.randint(0, 2, size=(1,)).item()
        angle = torch.FloatTensor(size=(1,)).uniform_(0.01, 359.9).item()
        if probability == 1:
            waveform_cropped_norm = rotate_waveform(waveform_cropped_norm, angle).real

        #### Channel DropOUT #####
        probability = torch.randint(0, 2, size=(1,)).item()
        channel = torch.randint(1, 3, size=(1,)).item()
        if probability == 1:
            waveform_cropped_norm[channel, :] = 1e-6

    # Normalize target
    new_target_P = new_target_P / crop_length
    new_target_S = new_target_S / crop_length

    if (new_target_P <= 0) or (new_target_P >= 1) or (np.isnan(new_target_P)):
        new_target_P = 0
    if (new_target_S <= 0) or (new_target_S >= 1) or (np.isnan(new_target_S)):
        new_target_S = 0

    return waveform_cropped_norm, new_target_P, new_target_S


def collation_fn(sample):
    waveforms = np.stack([x[0] for x in sample])
    targets_P = np.stack([x[1] for x in sample])
    targets_S = np.stack([x[2] for x in sample])

    return (
        torch.tensor(waveforms, dtype=torch.float),
        torch.tensor(targets_P, dtype=torch.float),
        torch.tensor(targets_S, dtype=torch.float),
    )


def my_split_by_node(urls):
    node_id, node_count = (
        torch.distributed.get_rank(),
        torch.distributed.get_world_size(),
    )
    return list(urls)[node_id::node_count]

def prepare_waveform(waveform):
    # SET PARAMETERS:
    crop_length = 6000
    padding = 120

    assert waveform.shape[0] <= 3, "Waveform has more than 3 channels"

    if waveform.shape[-1] < crop_length:
        waveform = np.pad(
            waveform,
            ((0, 0), (0, crop_length - waveform.shape[-1])),
            mode="constant",
            constant_values=0,
        )
    if waveform.shape[-1] > crop_length:
        waveform = waveform[:, :crop_length]

    # Preprocess
    waveform = detrend(waveform)
    waveform = butter_bandpass_filter(
        waveform, lowcut=0.2, highcut=40, fs=100, order=5
    )
    window = signal.windows.tukey(waveform[-1].shape[0], alpha=0.1)
    waveform = waveform * window
    waveform = detrend(waveform)

    assert np.isnan(waveform).any() != True, "Nan in waveform"
    assert np.sum(waveform) != 0, "Sum of waveform sample is zero"

    # Normalize data
    max_val = np.max(np.abs(waveform))
    waveform = waveform / max_val

    # Added Z component only
    if len(waveform) < 3:
        zeros = np.zeros((3, waveform.shape[-1]))
        zeros[0] = waveform

        waveform = zeros

    return torch.tensor([waveform]*128, dtype=torch.float)