Spaces:
Runtime error
Runtime error
import tensorflow as tf | |
from typing import List | |
import numpy as np | |
import cv2 | |
import os | |
vocab = [x for x in "abcdefghijklmnopqrstuvwxyz'?!123456789 "] | |
char_to_num = tf.keras.layers.StringLookup(vocabulary=vocab, oov_token="") | |
# Mapping integers back to original characters | |
num_to_char = tf.keras.layers.StringLookup( | |
vocabulary=char_to_num.get_vocabulary(), oov_token="", invert=True | |
) | |
def load_video(path:str) -> List[float]: | |
#print(path) | |
cap = cv2.VideoCapture(path) | |
frames = [] | |
for _ in range(int(cap.get(cv2.CAP_PROP_FRAME_COUNT))): | |
ret, frame = cap.read() | |
frame = tf.image.rgb_to_grayscale(frame) | |
frames.append(frame[190:236,80:220,:]) | |
cap.release() | |
mean = tf.math.reduce_mean(frames) | |
std = tf.math.reduce_std(tf.cast(frames, tf.float32)) | |
return tf.cast((frames - mean), tf.float32) / std | |
def load_alignments(path:str) -> List[str]: | |
#print(path) | |
with open(path, 'r') as f: | |
lines = f.readlines() | |
tokens = [] | |
for line in lines: | |
line = line.split() | |
if line[2] != 'sil': | |
tokens = [*tokens,' ',line[2]] | |
return char_to_num(tf.reshape(tf.strings.unicode_split(tokens, input_encoding='UTF-8'), (-1)))[1:] | |
def load_data(path: str): | |
path = bytes.decode(path.numpy()) | |
print(path) | |
file_name = path.split('/')[-1].split('.')[0] | |
# File name splitting for windows | |
# file_name = path.split('\\')[-1].split('.')[0] | |
video_path = os.path.join('data','s1',f'{file_name}.mpg') | |
alignment_path = os.path.join('data','alignments','s1',f'{file_name}.align') | |
frames = load_video(video_path) | |
print(frames.shape) | |
alignments = load_alignments(alignment_path) | |
image_data = (frames * 255).astype(np.uint8) | |
image_data = np.squeeze(image_data) | |
return frames, alignments, image_data |