Spaces:
Sleeping
Sleeping
File size: 45,345 Bytes
5b24075 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 |
import torch
import torch.nn as nn
import pytorch_lightning as pl
from torchmetrics import classification
import wandb
from matplotlib import pyplot as plt
import numpy as np
import matplotlib.ticker as ticker
from matplotlib.colors import ListedColormap
from huggingface_hub import PyTorchModelHubMixin
from lion_pytorch import Lion
import json
from messis.prithvi import TemporalViTEncoder, ConvTransformerTokensToEmbeddingNeck, ConvTransformerTokensToEmbeddingBottleneckNeck
def safe_shape(x):
if isinstance(x, tuple):
# loop through tuple
shape_info = '(tuple) : '
for i in x:
shape_info += str(i.shape) + ', '
return shape_info
if isinstance(x, list):
# loop through list
shape_info = '(list) : '
for i in x:
shape_info += str(i.shape) + ', '
return shape_info
return x.shape
class ConvModule(nn.Module):
"""
A simple convolutional module including Conv, BatchNorm, and ReLU layers.
"""
def __init__(self, in_channels, out_channels, kernel_size, padding, dilation):
super(ConvModule, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=1, padding=padding, dilation=dilation, bias=False)
self.bn = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return self.relu(x)
class HierarchicalFCNHead(nn.Module):
"""
Hierarchical FCN Head for semantic segmentation.
"""
def __init__(self, in_channels, out_channels, num_classes, num_convs=2, kernel_size=3, dilation=1, dropout_p=0.1, debug=False):
super(HierarchicalFCNHead, self).__init__()
self.debug = debug
self.convs = nn.Sequential(*[
ConvModule(
in_channels if i == 0 else out_channels,
out_channels,
kernel_size,
padding=dilation * (kernel_size // 2),
dilation=dilation
) for i in range(num_convs)
])
self.conv_seg = nn.Conv2d(out_channels, num_classes, kernel_size=1)
self.dropout = nn.Dropout2d(p=dropout_p)
def forward(self, x):
if self.debug:
print('HierarchicalFCNHead forward INP: ', safe_shape(x))
x = self.convs(x)
features = self.dropout(x)
output = self.conv_seg(features)
if self.debug:
print('HierarchicalFCNHead forward features OUT: ', safe_shape(features))
print('HierarchicalFCNHead forward output OUT: ', safe_shape(output))
return output, features
class LabelRefinementHead(nn.Module):
"""
Similar to the label refinement module introduced in the ZueriCrop paper, this module refines the predictions for tier 3.
It takes the raw predictions from head 1, head 2 and head 3 and refines them to produce the final prediction for tier 3.
According to ZueriCrop, this helps with making the predictions more consistent across the different tiers.
"""
def __init__(self, input_channels, num_classes):
super(LabelRefinementHead, self).__init__()
self.cnn_layers = nn.Sequential(
# 1x1 Convolutional layer
nn.Conv2d(in_channels=input_channels, out_channels=128, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
# 3x3 Convolutional layer
nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Dropout(p=0.5),
# Skip connection (implemented in forward method)
# Another 3x3 Convolutional layer
nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
# 1x1 Convolutional layer to adjust the number of output channels to num_classes
nn.Conv2d(in_channels=128, out_channels=num_classes, kernel_size=1, stride=1, padding=0),
nn.Dropout(p=0.5)
)
def forward(self, x):
# Apply initial conv layer
y = self.cnn_layers[0:3](x)
# Save for skip connection
y_skip = y
# Apply the next two conv layers
y = self.cnn_layers[3:9](y)
# Skip connection (element-wise addition)
y = y + y_skip
# Apply the last conv layer
y = self.cnn_layers[9:](y)
return y
class HierarchicalClassifier(nn.Module):
def __init__(
self,
heads_spec,
dropout_p=0.1,
img_size=256,
patch_size=16,
num_frames=3,
bands=[0, 1, 2, 3, 4, 5],
backbone_weights_path=None,
freeze_backbone=True,
use_bottleneck_neck=False,
bottleneck_reduction_factor=4,
loss_ignore_background=False,
debug=False
):
super(HierarchicalClassifier, self).__init__()
self.embed_dim = 768
if num_frames % 3 != 0:
raise ValueError("The number of frames must be a multiple of 3, it is currently: ", num_frames)
self.num_frames = num_frames
self.hp, self.wp = img_size // patch_size, img_size // patch_size
self.heads_spec = heads_spec
self.dropout_p = dropout_p
self.loss_ignore_background = loss_ignore_background
self.debug = debug
if self.debug:
print('hp and wp: ', self.hp, self.wp)
self.prithvi = TemporalViTEncoder(
img_size=img_size,
patch_size=patch_size,
num_frames=3,
tubelet_size=1,
in_chans=len(bands),
embed_dim=self.embed_dim,
depth=12,
num_heads=8,
mlp_ratio=4.0,
norm_pix_loss=False,
pretrained=backbone_weights_path,
debug=self.debug
)
# (Un)freeze the backbone
for param in self.prithvi.parameters():
param.requires_grad = not freeze_backbone
# Neck to transform the token-based output of the transformer into a spatial feature map
number_of_necks = self.num_frames // 3
if use_bottleneck_neck:
self.necks = nn.ModuleList([ConvTransformerTokensToEmbeddingBottleneckNeck(
embed_dim=self.embed_dim * 3,
output_embed_dim=self.embed_dim * 3,
drop_cls_token=True,
Hp=self.hp,
Wp=self.wp,
bottleneck_reduction_factor=bottleneck_reduction_factor
) for _ in range(number_of_necks)])
else:
self.necks = nn.ModuleList([ConvTransformerTokensToEmbeddingNeck(
embed_dim=self.embed_dim * 3,
output_embed_dim=self.embed_dim * 3,
drop_cls_token=True,
Hp=self.hp,
Wp=self.wp,
) for _ in range(number_of_necks)])
# Initialize heads and loss weights based on tiers
self.heads = nn.ModuleDict()
self.loss_weights = {}
self.total_classes = 0
# Build HierarchicalFCNHeads
head_count = 0
for head_name, head_info in self.heads_spec.items():
head_type = head_info['type']
num_classes = head_info['num_classes_to_predict']
loss_weight = head_info['loss_weight']
if head_type == 'HierarchicalFCNHead':
num_classes = head_info['num_classes_to_predict']
loss_weight = head_info['loss_weight']
kernel_size = head_info.get('kernel_size', 3)
num_convs = head_info.get('num_convs', 1)
num_channels = head_info.get('num_channels', 256)
self.total_classes += num_classes
self.heads[head_name] = HierarchicalFCNHead(
in_channels=(self.embed_dim * self.num_frames) if head_count == 0 else num_channels,
out_channels=num_channels,
num_classes=num_classes,
num_convs=num_convs,
kernel_size=kernel_size,
dropout_p=self.dropout_p,
debug=self.debug
)
self.loss_weights[head_name] = loss_weight
# NOTE: LabelRefinementHead must be the last in the dict, otherwise the total_classes will be incorrect
if head_type == 'LabelRefinementHead':
self.refinement_head = LabelRefinementHead(input_channels=self.total_classes, num_classes=num_classes)
self.refinement_head_name = head_name
self.loss_weights[head_name] = loss_weight
head_count += 1
self.loss_func = nn.CrossEntropyLoss(ignore_index=-1)
def forward(self, x):
if self.debug:
print(f"Input shape: {safe_shape(x)}") # torch.Size([4, 6, 9, 224, 224])
# Extract features from the base model
if len(self.necks) == 1:
features = [x]
else:
features = torch.chunk(x, len(self.necks), dim=2)
features = [self.prithvi(x) for x in features]
if self.debug:
print(f"Features shape after base model: {', '.join([safe_shape(f) for f in features])}") # (tuple) : torch.Size([4, 589, 768]), , (tuple) : torch.Size
# Process through the neck
features = [neck(feat_) for feat_, neck in zip(features, self.necks)]
if self.debug:
print(f"Features shape after neck: {', '.join([safe_shape(f) for f in features])}") # (tuple) : torch.Size([4, 2304, 224, 224]), , (tuple) : torch.Size
# Remove from tuple
features = [feat[0] for feat in features]
# stack the features to create a tensor of torch.Size([4, 6912, 224, 224])
features = torch.concatenate(features, dim=1)
if self.debug:
print(f"Features shape after removing tuple: {safe_shape(features)}") # torch.Size([4, 6912, 224, 224])
# Process through the heads
outputs = {}
for tier_name, head in self.heads.items():
output, features = head(features)
outputs[tier_name] = output
if self.debug:
print(f"Features shape after {tier_name} head: {safe_shape(features)}")
print(f"Output shape after {tier_name} head: {safe_shape(output)}")
# Process through the classification refinement head
output_concatenated = torch.cat(list(outputs.values()), dim=1)
output_refinement_head = self.refinement_head(output_concatenated)
outputs[self.refinement_head_name] = output_refinement_head
return outputs
def calculate_loss(self, outputs, targets):
total_loss = 0
loss_per_head = {}
for head_name, output in outputs.items():
if self.debug:
print(f"Target index for {head_name}: {self.heads_spec[head_name]['target_idx']}")
target = targets[self.heads_spec[head_name]['target_idx']]
loss_target = target
if self.loss_ignore_background:
loss_target = target.clone() # Clone as original target needed in backward pass
loss_target[loss_target == 0] = -1 # Set background class to ignore_index -1 for loss calculation
loss = self.loss_func(output, loss_target)
loss_per_head[f'{head_name}'] = loss
total_loss += loss * self.loss_weights[head_name]
return total_loss, loss_per_head
class Messis(pl.LightningModule, PyTorchModelHubMixin):
def __init__(self, hparams):
super().__init__()
self.save_hyperparameters(hparams)
self.model = HierarchicalClassifier(
heads_spec=hparams['heads_spec'],
dropout_p=hparams.get('dropout_p'),
img_size=hparams.get('img_size'),
patch_size=hparams.get('patch_size'),
num_frames=hparams.get('num_frames'),
bands=hparams.get('bands'),
backbone_weights_path=hparams.get('backbone_weights_path'),
freeze_backbone=hparams['freeze_backbone'],
use_bottleneck_neck=hparams.get('use_bottleneck_neck'),
bottleneck_reduction_factor=hparams.get('bottleneck_reduction_factor'),
loss_ignore_background=hparams.get('loss_ignore_background'),
debug=hparams.get('debug')
)
def forward(self, x):
return self.model(x)
def training_step(self, batch, batch_idx):
return self.__step(batch, batch_idx, "train")
def validation_step(self, batch, batch_idx):
return self.__step(batch, batch_idx, "val")
def test_step(self, batch, batch_idx):
return self.__step(batch, batch_idx, "test")
def configure_optimizers(self):
# select case on optimizer
match self.hparams.get('optimizer', 'Adam'):
case 'Adam':
optimizer = torch.optim.Adam(self.parameters(), lr=self.hparams.get('lr', 1e-3))
case 'AdamW':
optimizer = torch.optim.AdamW(self.parameters(), lr=self.hparams.get('lr', 1e-3), weight_decay=self.hparams.get('optimizer_weight_decay', 0.01))
case 'SGD':
optimizer = torch.optim.SGD(self.parameters(), lr=self.hparams.get('lr', 1e-3), momentum=self.hparams.get('optimizer_momentum', 0.9))
case 'Lion':
# https://github.com/lucidrains/lion-pytorch | Typically lr 3-10 times lower than Adam and weight_decay 3-10 times higher
optimizer = Lion(self.parameters(), lr=self.hparams.get('lr', 1e-4), weight_decay=self.hparams.get('optimizer_weight_decay', 0.1))
case _:
raise ValueError(f"Optimizer {self.hparams.get('optimizer')} not supported")
return optimizer
def __step(self, batch, batch_idx, stage):
inputs, targets = batch
targets = torch.stack(targets[0])
outputs = self(inputs)
loss, loss_per_head = self.model.calculate_loss(outputs, targets)
loss_per_head_named = {f'{stage}_loss_{head}': loss_per_head[head] for head in loss_per_head}
loss_proportions = { f'{stage}_loss_{head}_proportion': round(loss_per_head[head].item() / loss.item(), 2) for head in loss_per_head}
loss_detail_dict = {**loss_per_head_named, **loss_proportions}
if self.hparams.get('debug'):
print(f"Step Inputs shape: {safe_shape(inputs)}")
print(f"Step Targets shape: {safe_shape(targets)}")
print(f"Step Outputs dict keys: {outputs.keys()}")
# NOTE: All metrics other than loss are tracked by callbacks (LogMessisMetrics)
self.log_dict({f'{stage}_loss': loss, **loss_detail_dict}, on_step=True, on_epoch=True, prog_bar=True, logger=True)
return {'loss': loss, 'outputs': outputs}
class LogConfusionMatrix(pl.Callback):
def __init__(self, hparams, dataset_info_file, debug=False):
super().__init__()
assert hparams.get('heads_spec') is not None, "heads_spec must be defined in the hparams"
self.tiers_dict = {k: v for k, v in hparams.get('heads_spec').items() if v.get('is_metrics_tier', False)}
self.last_tier_name = next((k for k, v in hparams.get('heads_spec').items() if v.get('is_last_tier', False)), None)
self.final_head_name = next((k for k, v in hparams.get('heads_spec').items() if v.get('is_final_head', False)), None)
assert self.last_tier_name is not None, "No tier found with 'is_last_tier' set to True"
assert self.final_head_name is not None, "No head found with 'is_final_head' set to True"
self.tiers = list(self.tiers_dict.keys())
self.phases = ['train', 'val', 'test']
self.modes = ['pixelwise', 'majority']
self.debug = debug
if debug:
print(f"Final head identified as: {self.final_head_name}")
print(f"LogConfusionMatrix Metrics over | Phases: {self.phases}, Tiers: {self.tiers}, Modes: {self.modes}")
with open(dataset_info_file, 'r') as f:
self.dataset_info = json.load(f)
# Initialize confusion matrices
self.metrics_to_compute = ['confusion_matrix']
self.metrics = {phase: {tier: {mode: self.__init_metrics(tier, phase) for mode in self.modes} for tier in self.tiers} for phase in self.phases}
def __init_metrics(self, tier, phase):
num_classes = self.tiers_dict[tier]['num_classes_to_predict']
confusion_matrix = classification.MulticlassConfusionMatrix(num_classes=num_classes)
return {
'confusion_matrix': confusion_matrix
}
def setup(self, trainer, pl_module, stage=None):
# Move all metrics to the correct device at the start of the training/validation
device = pl_module.device
for phase_metrics in self.metrics.values():
for tier_metrics in phase_metrics.values():
for mode_metrics in tier_metrics.values():
for metric in self.metrics_to_compute:
mode_metrics[metric].to(device)
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
self.__update_confusion_matrices(trainer, pl_module, outputs, batch, batch_idx, 'train')
def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
self.__update_confusion_matrices(trainer, pl_module, outputs, batch, batch_idx, 'val')
def on_test_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
self.__update_confusion_matrices(trainer, pl_module, outputs, batch, batch_idx, 'test')
def __update_confusion_matrices(self, trainer, pl_module, outputs, batch, batch_idx, phase):
if trainer.sanity_checking:
return
targets = torch.stack(batch[1][0]) # (tiers, batch, H, W)
outputs = outputs['outputs'][self.final_head_name] # (batch, C, H, W)
field_ids = batch[1][1].permute(1, 0, 2, 3)[0]
pixelwise_outputs, majority_outputs = LogConfusionMatrix.get_pixelwise_and_majority_outputs(outputs, self.tiers, field_ids, self.dataset_info)
for preds, mode in zip([pixelwise_outputs, majority_outputs], self.modes):
# Update all metrics
assert len(preds) == len(targets), f"Number of predictions and targets do not match: {len(preds)} vs {len(targets)}"
assert len(preds) == len(self.tiers), f"Number of predictions and tiers do not match: {len(preds)} vs {len(self.tiers)}"
for pred, target, tier in zip(preds, targets, self.tiers):
if self.debug:
print(f"Updating confusion matrix for {phase} {tier} {mode}")
metrics = self.metrics[phase][tier][mode]
# flatten and remove background class if the mode is majority (such that the background class is not included in the confusion matrix)
if mode == 'majority':
pred = pred[target != 0]
target = target[target != 0]
metrics['confusion_matrix'].update(pred, target)
@staticmethod
def get_pixelwise_and_majority_outputs(refinement_head_outputs, tiers, field_ids, dataset_info):
"""
Get the pixelwise and majority predictions from the model outputs.
The pixelwise tier predictions are derived from the refinement_head_outputs predictions.
The majority last tier predictions are derived from the refinement_head_outputs. And then the majority lower-tier predictions are derived from the majority highest-tier predictions.
Also sets the background to 0 for all field majority predictions (regardless of what the model predicts for the background class).
As this is a classification task and not a segmentation task and the field boundaries are known beforehand and not of any interest.
Args:
refinement_head_outputs (torch.Tensor(batch, C, H, W)): The probability outputs from the model for the refined tier.
tiers (list of str): List of tiers e.g. ['tier1', 'tier2', 'tier3'].
field_ids (torch.Tensor(batch, H, W)): The field IDs for each prediction.
dataset_info (dict): The dataset information.
Returns:
torch.Tensor(tiers, batch, H, W): The pixelwise predictions.
torch.Tensor(tiers, batch, H, W): The majority predictions.
"""
# Assuming the highest tier is the last one in the list
highest_tier = tiers[-1]
pixelwise_highest_tier = torch.softmax(refinement_head_outputs, dim=1).argmax(dim=1) # (batch, H, W)
majority_highest_tier = LogConfusionMatrix.get_field_majority_preds(refinement_head_outputs, field_ids)
tier_mapping = {tier: dataset_info[f'{highest_tier}_to_{tier}'] for tier in tiers if tier != highest_tier}
pixelwise_outputs = {highest_tier: pixelwise_highest_tier}
majority_outputs = {highest_tier: majority_highest_tier}
# Initialize pixelwise and majority outputs for each tier
for tier in tiers:
if tier != highest_tier:
pixelwise_outputs[tier] = torch.zeros_like(pixelwise_highest_tier)
majority_outputs[tier] = torch.zeros_like(majority_highest_tier)
# Map the highest tier to lower tiers
for i, mappings in enumerate(zip(*tier_mapping.values())):
for j, tier in enumerate(tier_mapping.keys()):
pixelwise_outputs[tier][pixelwise_highest_tier == i] = mappings[j]
majority_outputs[tier][majority_highest_tier == i] = mappings[j]
pixelwise_outputs_stacked = torch.stack([pixelwise_outputs[tier] for tier in tiers])
majority_outputs_stacked = torch.stack([majority_outputs[tier] for tier in tiers])
# Ensure these are tensors
assert isinstance(pixelwise_outputs_stacked, torch.Tensor), "pixelwise_outputs_stacked is not a tensor"
assert isinstance(majority_outputs_stacked, torch.Tensor), "majority_outputs_stacked is not a tensor"
return pixelwise_outputs_stacked, majority_outputs_stacked
@staticmethod
def get_field_majority_preds(output, field_ids):
"""
Get the majority prediction for each field in the batch. The majority excludes the background class.
Args:
output (torch.Tensor(batch, C, H, W)): The probability outputs from the model (tier3_refined)
field_ids (torch.Tensor(batch, H, W)): The field IDs for each prediction.
Returns:
torch.Tensor(batch, H, W): The majority predictions.
"""
# remove the background class
pixelwise = torch.softmax(output[:, 1:, :, :], dim=1).argmax(dim=1) + 1 # (batch, H, W)
majority_preds = torch.zeros_like(pixelwise)
for batch in range(len(pixelwise)):
field_ids_batch = field_ids[batch]
for field_id in np.unique(field_ids_batch.cpu().numpy()):
if field_id == 0:
continue
field_mask = field_ids_batch == field_id
flattened_pred = pixelwise[batch][field_mask].view(-1) # Flatten the prediction
flattened_pred = flattened_pred[flattened_pred != 0] # Exclude background class
if len(flattened_pred) == 0:
continue
mode_pred, _ = torch.mode(flattened_pred) # Compute mode prediction
majority_preds[batch][field_mask] = mode_pred.item()
return majority_preds
def on_train_epoch_end(self, trainer, pl_module):
# Log and then reset the confusion matrices after training epoch
self.__log_and_reset_confusion_matrices(trainer, pl_module, 'train')
def on_validation_epoch_end(self, trainer, pl_module):
# Log and then reset the confusion matrices after validation epoch
self.__log_and_reset_confusion_matrices(trainer, pl_module, 'val')
def on_test_epoch_end(self, trainer, pl_module):
# Log and then reset the confusion matrices after test epoch
self.__log_and_reset_confusion_matrices(trainer, pl_module, 'test')
def __log_and_reset_confusion_matrices(self, trainer, pl_module, phase):
if trainer.sanity_checking:
return
for tier in self.tiers:
for mode in self.modes:
metrics = self.metrics[phase][tier][mode]
confusion_matrix = metrics['confusion_matrix']
if self.debug:
print(f"Logging and resetting confusion matrix for {phase} {tier} Update count: {confusion_matrix._update_count}")
matrix = confusion_matrix.compute() # columns are predictions and rows are targets
# Calculate percentages
matrix = matrix.float()
row_sums = matrix.sum(dim=1, keepdim=True)
matrix_percent = matrix / row_sums
# Ensure percentages sum to 1 for each row or handle NaNs
row_sum_check = matrix_percent.sum(dim=1)
valid_rows = ~torch.isnan(row_sum_check)
if valid_rows.any():
assert torch.allclose(row_sum_check[valid_rows], torch.ones_like(row_sum_check[valid_rows]), atol=1e-2), "Percentages do not sum to 1 for some valid rows"
# Sort the matrix and labels by the total number of instances
sorted_indices = row_sums.squeeze().argsort(descending=True)
matrix_percent = matrix_percent[sorted_indices, :] # sort rows
matrix_percent = matrix_percent[:, sorted_indices] # sort columns
class_labels = [self.dataset_info[tier][i] for i in sorted_indices]
row_sums_sorted = row_sums[sorted_indices]
# Check for zero rows after sorting
zero_rows = (row_sums_sorted == 0).squeeze()
fig, ax = plt.subplots(figsize=(matrix.size(0), matrix.size(0)), dpi=140)
ax.matshow(matrix_percent.cpu().numpy(), cmap='viridis')
ax.xaxis.set_major_locator(ticker.FixedLocator(range(matrix.size(1) + 1)))
ax.yaxis.set_major_locator(ticker.FixedLocator(range(matrix.size(0) + 1)))
ax.set_xticklabels(class_labels + [''], rotation=45)
ax.set_yticklabels(class_labels + [''])
# Add total number of instances to the y-axis labels
y_labels = [f'{class_labels[i]} [n={int(row_sums_sorted[i].item()):,.0f}]'.replace(',', "'") for i in range(matrix.size(0))]
ax.set_yticklabels(y_labels + [''])
ax.set_xlabel('Predictions')
ax.set_ylabel('Targets')
# Move x-axis label and ticks to the top
ax.xaxis.set_label_position('top')
ax.xaxis.set_ticks_position('top')
fig.tight_layout()
for i in range(matrix.size(0)):
for j in range(matrix.size(1)):
if zero_rows[i]:
ax.text(j, i, 'N/A', ha='center', va='center', color='black')
else:
ax.text(j, i, f'{matrix_percent[i, j]:.2f}', ha='center', va='center', color='#F88379', weight='bold') # coral red
trainer.logger.experiment.log({f"{phase}_{tier}_confusion_matrix_{mode}": wandb.Image(fig)})
plt.close()
confusion_matrix.reset()
class LogMessisMetrics(pl.Callback):
def __init__(self, hparams, dataset_info_file, debug=False):
super().__init__()
assert hparams.get('heads_spec') is not None, "heads_spec must be defined in the hparams"
self.tiers_dict = {k: v for k, v in hparams.get('heads_spec').items() if v.get('is_metrics_tier', False)}
self.last_tier_name = next((k for k, v in hparams.get('heads_spec').items() if v.get('is_last_tier', False)), None)
self.final_head_name = next((k for k, v in hparams.get('heads_spec').items() if v.get('is_final_head', False)), None)
assert self.last_tier_name is not None, "No tier found with 'is_last_tier' set to True"
assert self.final_head_name is not None, "No head found with 'is_final_head' set to True"
self.tiers = list(self.tiers_dict.keys())
self.phases = ['train', 'val', 'test']
self.modes = ['pixelwise', 'majority']
self.debug = debug
if debug:
print(f"Last tier identified as: {self.last_tier_name}")
print(f"Final head identified as: {self.final_head_name}")
print(f"LogMessisMetrics Metrics over | Phases: {self.phases}, Tiers: {self.tiers}, Modes: {self.modes}")
with open(dataset_info_file, 'r') as f:
self.dataset_info = json.load(f)
# Initialize metrics
self.metrics_to_compute = ['accuracy', 'weighted_accuracy', 'precision', 'weighted_precision', 'recall', 'weighted_recall' ,'f1', 'weighted_f1', 'cohen_kappa']
self.metrics = {phase: {tier: {mode: self.__init_metrics(tier, phase) for mode in self.modes} for tier in self.tiers} for phase in self.phases}
self.images_to_log = {phase: {mode: None for mode in self.modes} for phase in self.phases}
self.images_to_log_targets = {phase: None for phase in self.phases}
self.field_ids_to_log_targets = {phase: None for phase in self.phases}
self.inputs_to_log = {phase: None for phase in self.phases}
def __init_metrics(self, tier, phase):
num_classes = self.tiers_dict[tier]['num_classes_to_predict']
accuracy = classification.MulticlassAccuracy(num_classes=num_classes, average='macro')
weighted_accuracy = classification.MulticlassAccuracy(num_classes=num_classes, average='weighted')
per_class_accuracies = {
class_index: classification.BinaryAccuracy() for class_index in range(num_classes)
}
precision = classification.MulticlassPrecision(num_classes=num_classes, average='macro')
weighted_precision = classification.MulticlassPrecision(num_classes=num_classes, average='weighted')
recall = classification.MulticlassRecall(num_classes=num_classes, average='macro')
weighted_recall = classification.MulticlassRecall(num_classes=num_classes, average='weighted')
f1 = classification.MulticlassF1Score(num_classes=num_classes, average='macro')
weighted_f1 = classification.MulticlassF1Score(num_classes=num_classes, average='weighted')
cohen_kappa = classification.MulticlassCohenKappa(num_classes=num_classes)
return {
'accuracy': accuracy,
'weighted_accuracy': weighted_accuracy,
'per_class_accuracies': per_class_accuracies,
'precision': precision,
'weighted_precision': weighted_precision,
'recall': recall,
'weighted_recall': weighted_recall,
'f1': f1,
'weighted_f1': weighted_f1,
'cohen_kappa': cohen_kappa
}
def setup(self, trainer, pl_module, stage=None):
# Move all metrics to the correct device at the start of the training/validation
device = pl_module.device
for phase_metrics in self.metrics.values():
for tier_metrics in phase_metrics.values():
for mode_metrics in tier_metrics.values():
for metric in self.metrics_to_compute:
mode_metrics[metric].to(device)
for class_accuracy in mode_metrics['per_class_accuracies'].values():
class_accuracy.to(device)
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
self.__on_batch_end(trainer, pl_module, outputs, batch, batch_idx, 'train')
def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
self.__on_batch_end(trainer, pl_module, outputs, batch, batch_idx, 'val')
def on_test_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
self.__on_batch_end(trainer, pl_module, outputs, batch, batch_idx, 'test')
def __on_batch_end(self, trainer: pl.Trainer, pl_module, outputs, batch, batch_idx, phase):
if trainer.sanity_checking:
return
if self.debug:
print(f"{phase} batch ended. Updating metrics...")
targets = torch.stack(batch[1][0]) # (tiers, batch, H, W)
outputs = outputs['outputs'][self.final_head_name] # (batch, C, H, W)
field_ids = batch[1][1].permute(1, 0, 2, 3)[0]
pixelwise_outputs, majority_outputs = LogConfusionMatrix.get_pixelwise_and_majority_outputs(outputs, self.tiers, field_ids, self.dataset_info)
for preds, mode in zip([pixelwise_outputs, majority_outputs], self.modes):
# Update all metrics
assert preds.shape == targets.shape, f"Shapes of predictions and targets do not match: {preds.shape} vs {targets.shape}"
assert preds.shape[0] == len(self.tiers), f"Number of tiers in predictions and tiers do not match: {preds.shape[0]} vs {len(self.tiers)}"
self.images_to_log[phase][mode] = preds[-1]
for pred, target, tier in zip(preds, targets, self.tiers):
# flatten and remove background class if the mode is majority (such that the background class is not considered in the metrics)
if mode == 'majority':
pred = pred[target != 0]
target = target[target != 0]
metrics = self.metrics[phase][tier][mode]
for metric in self.metrics_to_compute:
metrics[metric].update(pred, target)
if self.debug:
print(f"{phase} {tier} {mode} {metric} updated. Update count: {metrics[metric]._update_count}")
self.__update_per_class_metrics(pred, target, metrics['per_class_accuracies'])
self.images_to_log_targets[phase] = targets[-1]
self.field_ids_to_log_targets[phase] = field_ids
self.inputs_to_log[phase] = batch[0]
def __update_per_class_metrics(self, preds, targets, per_class_accuracies):
for class_index, class_accuracy in per_class_accuracies.items():
if not (targets == class_index).any():
continue
if class_index == 0:
# Mask out non-background elements for background class (0)
class_mask = targets != 0
else:
# Mask out background elements for other classes
class_mask = targets == 0
preds_fields = preds[~class_mask]
targets_fields = targets[~class_mask]
# Prepare for binary classification (needs to be float)
preds_class = (preds_fields == class_index).float()
targets_class = (targets_fields == class_index).float()
class_accuracy.update(preds_class, targets_class)
if self.debug:
print(f"Shape of preds_fields: {preds_fields.shape}")
print(f"Shape of targets_fields: {targets_fields.shape}")
print(f"Unique values in preds_fields: {torch.unique(preds_fields)}")
print(f"Unique values in targets_fields: {torch.unique(targets_fields)}")
print(f"Per-class metrics for class {class_index} updated. Update count: {per_class_accuracies[class_index]._update_count}")
def on_train_epoch_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
self.__on_epoch_end(trainer, pl_module, 'train')
def on_validation_epoch_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
self.__on_epoch_end(trainer, pl_module, 'val')
def on_test_epoch_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
self.__on_epoch_end(trainer, pl_module, 'test')
def __on_epoch_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule, phase):
if trainer.sanity_checking:
return # Skip during sanity check (avoid warning about metric compute being called before update)
for tier in self.tiers:
for mode in self.modes:
metrics = self.metrics[phase][tier][mode]
# Calculate and reset in tier: Accuracy, WeightedAccuracy, Precision, Recall, F1, Cohen's Kappa
metrics_dict = {metric: metrics[metric].compute() for metric in self.metrics_to_compute}
pl_module.log_dict({f"{phase}_{metric}_{tier}_{mode}": v for metric, v in metrics_dict.items()}, on_step=False, on_epoch=True)
for metric in self.metrics_to_compute:
metrics[metric].reset()
# Per-class metrics
# NOTE: Some literature reports "per class accuracy" but what they actually mean is "per class recall".
# Using the accuracy formula per class has no value in our imbalanced multi-class setting (TN's inflate scores!)
# We calculate all 4 metrics. This allows us to calculate any macro/micro score later if needed.
class_metrics = []
class_names_mapping = self.dataset_info[tier.split('_')[0] if '_refined' in tier else tier]
for class_index, class_accuracy in metrics['per_class_accuracies'].items():
if class_accuracy._update_count == 0:
continue # Skip if no updates have been made
tp, tn, fp, fn = class_accuracy.tp, class_accuracy.tn, class_accuracy.fp, class_accuracy.fn
recall = (tp / (tp + fn)).item() if tp + fn > 0 else 0
precision = (tp / (tp + fp)).item() if tp + fp > 0 else 0
f1 = (2 * (precision * recall) / (precision + recall)) if precision + recall > 0 else 0
n_of_class = (tp + fn).item()
class_metrics.append([class_index, class_names_mapping[class_index], precision, recall, f1, class_accuracy.compute().item(), n_of_class])
class_accuracy.reset()
wandb_table = wandb.Table(data=class_metrics, columns=["Class Index", "Class Name", "Precision", "Recall", "F1", "Accuracy", "N"])
trainer.logger.experiment.log({f"{phase}_per_class_metrics_{tier}_{mode}": wandb_table})
# use the same n_classes for all images, such that they are comparable
n_classes = max([
torch.max(self.images_to_log_targets[phase]),
torch.max(self.images_to_log[phase]["majority"]),
torch.max(self.images_to_log[phase]["pixelwise"])
])
images = [LogMessisMetrics.process_images(self.images_to_log[phase][mode], n_classes) for mode in self.modes]
images.append(LogMessisMetrics.create_positive_negative_image(self.images_to_log[phase]["majority"], self.images_to_log_targets[phase]))
images.append(LogMessisMetrics.process_images(self.images_to_log_targets[phase], n_classes))
images.append(LogMessisMetrics.process_images(self.field_ids_to_log_targets[phase].cpu()))
examples = []
for i in range(len(images[0])):
example = np.concatenate([img[i] for img in images], axis=0)
examples.append(wandb.Image(example, caption=f"From Top to Bottom: {self.modes[0]}, {self.modes[1]}, right/wrong classifications, target, fields"))
trainer.logger.experiment.log({f"{phase}_examples": examples})
# Log segmentation masks
batch_input_data = self.inputs_to_log[phase].cpu() # shape [BS, 6, N_TIMESTEPS, 224, 224]
ground_truth_masks = self.images_to_log_targets[phase].cpu().numpy()
pixel_wise_masks = self.images_to_log[phase]["pixelwise"].cpu().numpy()
field_majority_masks = self.images_to_log[phase]["majority"].cpu().numpy()
correctness_masks = self.create_positive_negative_segmentation_mask(field_majority_masks, ground_truth_masks)
class_labels = {idx: name for idx, name in enumerate(self.dataset_info[self.last_tier_name])}
segmentation_masks = []
for input_data, ground_truth_mask, pixel_wise_mask, field_majority_mask, correctness_mask in zip(batch_input_data, ground_truth_masks, pixel_wise_masks, field_majority_masks, correctness_masks):
middle_timestep_index = input_data.shape[1] // 2 # Get the middle timestamp index
gamma = 2.5 # Gamma for brightness adjustment
rgb_image = input_data[:3, middle_timestep_index, :, :].permute(1, 2, 0).numpy() # Shape [224, 224, 3]
rgb_image = (rgb_image - rgb_image.min()) / (rgb_image.max() - rgb_image.min())
rgb_image = np.power(rgb_image, 1.0 / gamma)
rgb_image = (rgb_image * 255).astype(np.uint8)
mask_img = wandb.Image(
rgb_image,
masks={
"predictions_pixel_wise": {"mask_data": pixel_wise_mask, "class_labels": class_labels},
"predictions_field_majority": {"mask_data": field_majority_mask, "class_labels": class_labels},
"ground_truth": {"mask_data": ground_truth_mask, "class_labels": class_labels},
"correctness": {"mask_data": correctness_mask, "class_labels": { 0: "Background", 1: "Wrong", 2: "Right" }},
},
)
segmentation_masks.append(mask_img)
trainer.logger.experiment.log({f"{phase}_segmentation_mask": segmentation_masks})
if self.debug:
print(f"{phase} epoch ended. Logging & resetting metrics...", trainer.sanity_checking)
@staticmethod
def create_positive_negative_segmentation_mask(field_majority_masks, ground_truth_masks):
"""
Create a tensor that shows the positive and negative classifications of the model.
Args:
field_majority_masks (np.ndarray): The field majority masks generated by the model.
ground_truth_masks (np.ndarray): The ground truth masks.
Returns:
np.ndarray: An array with values:
- 0 where the target is 0,
- 2 where the prediction matches the target,
- 1 where the prediction does not match the target.
"""
correctness_mask = np.zeros_like(ground_truth_masks, dtype=int)
matches = (field_majority_masks == ground_truth_masks) & (ground_truth_masks != 0)
correctness_mask[matches] = 2
mismatches = (field_majority_masks != ground_truth_masks) & (ground_truth_masks != 0)
correctness_mask[mismatches] = 1
return correctness_mask
@staticmethod
def create_positive_negative_image(generated_images, target_images):
"""
Create an image that shows the positive and negative classifications of the model.
Args:
generated_images (torch.Tensor): The images generated by the model.
target_images (torch.Tensor): The target images.
Returns:
list: A list of processed images.
"""
classification_masks = generated_images == target_images
processed_imgs = []
for mask, target in zip(classification_masks, target_images):
# color the background white, right classifications green, wrong classifications red
colored_img = torch.zeros((mask.shape[0], mask.shape[1], 3), dtype=torch.uint8)
mask = mask.bool() # Convert to boolean tensor
colored_img[mask] = torch.tensor([0, 255, 0], dtype=torch.uint8)
colored_img[~mask] = torch.tensor([255, 0, 0], dtype=torch.uint8)
colored_img[target == 0] = torch.tensor([0, 0, 0], dtype=torch.uint8)
processed_imgs.append(colored_img.cpu())
return processed_imgs
@staticmethod
def process_images(imgs, max=None):
"""
Process a batch of images to be logged on wandb.
Args:
imgs (torch.Tensor): A batch of images with shape (B, H, W) to be processed.
max (float, optional): The maximum value to normalize the images. Defaults to None. If None, the maximum value in the batch is used.
"""
if max is None:
max = np.max(imgs.cpu().numpy())
normalized_img = imgs / max
processed_imgs = []
for img in normalized_img.cpu().numpy():
if max < 60:
cmap = ListedColormap(plt.get_cmap('tab20').colors + plt.get_cmap('tab20b').colors + plt.get_cmap('tab20c').colors)
else:
cmap = plt.get_cmap('viridis')
colored_img = cmap(img)
colored_img[img == 0] = [0, 0, 0, 1]
colored_img_uint8 = (colored_img[:, :, :3] * 255).astype(np.uint8)
processed_imgs.append(colored_img_uint8)
return processed_imgs |