File size: 45,345 Bytes
5b24075
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
import torch
import torch.nn as nn
import pytorch_lightning as pl
from torchmetrics import classification
import wandb
from matplotlib import pyplot as plt
import numpy as np
import matplotlib.ticker as ticker
from matplotlib.colors import ListedColormap
from huggingface_hub import PyTorchModelHubMixin
from lion_pytorch import Lion

import json

from messis.prithvi import TemporalViTEncoder, ConvTransformerTokensToEmbeddingNeck, ConvTransformerTokensToEmbeddingBottleneckNeck


def safe_shape(x):
    if isinstance(x, tuple):
        # loop through tuple
        shape_info = '(tuple) : '
        for i in x:
            shape_info += str(i.shape) + ', '
        return shape_info
    if isinstance(x, list):
        # loop through list
        shape_info = '(list) : '
        for i in x:
            shape_info += str(i.shape) + ', '
        return shape_info
    return x.shape

class ConvModule(nn.Module):
    """
    A simple convolutional module including Conv, BatchNorm, and ReLU layers.
    """
    def __init__(self, in_channels, out_channels, kernel_size, padding, dilation):
        super(ConvModule, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=1, padding=padding, dilation=dilation, bias=False)
        self.bn = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return self.relu(x)

class HierarchicalFCNHead(nn.Module):
    """
    Hierarchical FCN Head for semantic segmentation.
    """
    def __init__(self, in_channels, out_channels, num_classes, num_convs=2, kernel_size=3, dilation=1, dropout_p=0.1, debug=False):
        super(HierarchicalFCNHead, self).__init__()

        self.debug = debug
        
        self.convs = nn.Sequential(*[
            ConvModule(
                in_channels if i == 0 else out_channels,
                out_channels,
                kernel_size,
                padding=dilation * (kernel_size // 2),
                dilation=dilation
            ) for i in range(num_convs)
        ])
        
        self.conv_seg = nn.Conv2d(out_channels, num_classes, kernel_size=1)
        self.dropout = nn.Dropout2d(p=dropout_p)

    def forward(self, x):
        if self.debug:
            print('HierarchicalFCNHead forward INP: ', safe_shape(x))
        x = self.convs(x)
        features = self.dropout(x)
        output = self.conv_seg(features)
        if self.debug:
            print('HierarchicalFCNHead forward features OUT: ', safe_shape(features))
            print('HierarchicalFCNHead forward output OUT: ', safe_shape(output))
        return output, features

class LabelRefinementHead(nn.Module):
    """
    Similar to the label refinement module introduced in the ZueriCrop paper, this module refines the predictions for tier 3.
    It takes the raw predictions from head 1, head 2 and head 3 and refines them to produce the final prediction for tier 3.
    According to ZueriCrop, this helps with making the predictions more consistent across the different tiers.
    """
    def __init__(self, input_channels, num_classes):
        super(LabelRefinementHead, self).__init__()
        
        self.cnn_layers = nn.Sequential(
            # 1x1 Convolutional layer
            nn.Conv2d(in_channels=input_channels, out_channels=128, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            
            # 3x3 Convolutional layer
            nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Dropout(p=0.5),

            # Skip connection (implemented in forward method)
            
            # Another 3x3 Convolutional layer
            nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            
            # 1x1 Convolutional layer to adjust the number of output channels to num_classes
            nn.Conv2d(in_channels=128, out_channels=num_classes, kernel_size=1, stride=1, padding=0),
            nn.Dropout(p=0.5)
        )
        
    def forward(self, x):
        # Apply initial conv layer
        y = self.cnn_layers[0:3](x)

        # Save for skip connection
        y_skip = y

        # Apply the next two conv layers
        y = self.cnn_layers[3:9](y)

        # Skip connection (element-wise addition)
        y = y + y_skip

        # Apply the last conv layer
        y = self.cnn_layers[9:](y)
        return y

class HierarchicalClassifier(nn.Module):
    def __init__(
            self, 
            heads_spec,
            dropout_p=0.1,
            img_size=256, 
            patch_size=16, 
            num_frames=3,
            bands=[0, 1, 2, 3, 4, 5], 
            backbone_weights_path=None, 
            freeze_backbone=True, 
            use_bottleneck_neck=False,
            bottleneck_reduction_factor=4,
            loss_ignore_background=False,
            debug=False
        ):
        super(HierarchicalClassifier, self).__init__()

        self.embed_dim = 768
        if num_frames % 3 != 0:
            raise ValueError("The number of frames must be a multiple of 3, it is currently: ", num_frames)
        self.num_frames = num_frames
        self.hp, self.wp = img_size // patch_size, img_size // patch_size
        self.heads_spec = heads_spec
        self.dropout_p = dropout_p
        self.loss_ignore_background = loss_ignore_background
        self.debug = debug

        if self.debug:
            print('hp and wp: ', self.hp, self.wp)

        self.prithvi = TemporalViTEncoder(
            img_size=img_size,
            patch_size=patch_size,
            num_frames=3,
            tubelet_size=1,
            in_chans=len(bands),
            embed_dim=self.embed_dim,
            depth=12,
            num_heads=8,
            mlp_ratio=4.0,
            norm_pix_loss=False,
            pretrained=backbone_weights_path,
            debug=self.debug
        )

        # (Un)freeze the backbone
        for param in self.prithvi.parameters():
            param.requires_grad = not freeze_backbone

        # Neck to transform the token-based output of the transformer into a spatial feature map
        number_of_necks = self.num_frames // 3
        if use_bottleneck_neck:
            self.necks = nn.ModuleList([ConvTransformerTokensToEmbeddingBottleneckNeck(
                embed_dim=self.embed_dim * 3,
                output_embed_dim=self.embed_dim * 3,
                drop_cls_token=True,
                Hp=self.hp,
                Wp=self.wp,
                bottleneck_reduction_factor=bottleneck_reduction_factor
            ) for _ in range(number_of_necks)])
        else:
            self.necks = nn.ModuleList([ConvTransformerTokensToEmbeddingNeck(
                embed_dim=self.embed_dim * 3,
                output_embed_dim=self.embed_dim * 3,
                drop_cls_token=True,
                Hp=self.hp,
                Wp=self.wp,
            ) for _ in range(number_of_necks)])

        # Initialize heads and loss weights based on tiers
        self.heads = nn.ModuleDict()
        self.loss_weights = {}
        self.total_classes = 0

        # Build HierarchicalFCNHeads
        head_count = 0
        for head_name, head_info in self.heads_spec.items():
            head_type = head_info['type']
            num_classes = head_info['num_classes_to_predict']
            loss_weight = head_info['loss_weight']

            if head_type == 'HierarchicalFCNHead':
                num_classes = head_info['num_classes_to_predict']
                loss_weight = head_info['loss_weight']
                kernel_size = head_info.get('kernel_size', 3)
                num_convs = head_info.get('num_convs', 1)
                num_channels = head_info.get('num_channels', 256)
                self.total_classes += num_classes

                self.heads[head_name] = HierarchicalFCNHead(
                    in_channels=(self.embed_dim * self.num_frames) if head_count == 0 else num_channels,
                    out_channels=num_channels,
                    num_classes=num_classes,
                    num_convs=num_convs,
                    kernel_size=kernel_size,
                    dropout_p=self.dropout_p,
                    debug=self.debug
                )
                self.loss_weights[head_name] = loss_weight

            # NOTE: LabelRefinementHead must be the last in the dict, otherwise the total_classes will be incorrect
            if head_type == 'LabelRefinementHead':
                self.refinement_head = LabelRefinementHead(input_channels=self.total_classes, num_classes=num_classes)
                self.refinement_head_name = head_name
                self.loss_weights[head_name] = loss_weight

            head_count += 1

        self.loss_func = nn.CrossEntropyLoss(ignore_index=-1)

    def forward(self, x):
        if self.debug:
            print(f"Input shape: {safe_shape(x)}") # torch.Size([4, 6, 9, 224, 224])

        # Extract features from the base model
        if len(self.necks) == 1:
            features = [x]
        else:
            features = torch.chunk(x, len(self.necks), dim=2)
        features = [self.prithvi(x) for x in features]

        if self.debug:
            print(f"Features shape after base model: {', '.join([safe_shape(f) for f in features])}") # (tuple) : torch.Size([4, 589, 768]), , (tuple) : torch.Size

        # Process through the neck
        features = [neck(feat_) for feat_, neck in zip(features, self.necks)]

        if self.debug:
            print(f"Features shape after neck: {', '.join([safe_shape(f) for f in features])}") # (tuple) : torch.Size([4, 2304, 224, 224]), , (tuple) : torch.Size

        # Remove from tuple
        features = [feat[0] for feat in features]
        # stack the features to create a tensor of torch.Size([4, 6912, 224, 224])
        features = torch.concatenate(features, dim=1)
        if self.debug:
            print(f"Features shape after removing tuple: {safe_shape(features)}") # torch.Size([4, 6912, 224, 224])

        # Process through the heads
        outputs = {}
        for tier_name, head in self.heads.items():
            output, features = head(features)
            outputs[tier_name] = output

            if self.debug:
                print(f"Features shape after {tier_name} head: {safe_shape(features)}")
                print(f"Output shape after {tier_name} head: {safe_shape(output)}")

        # Process through the classification refinement head
        output_concatenated = torch.cat(list(outputs.values()), dim=1)
        output_refinement_head = self.refinement_head(output_concatenated)
        outputs[self.refinement_head_name] = output_refinement_head

        return outputs

    def calculate_loss(self, outputs, targets):
        total_loss = 0
        loss_per_head = {}
        for head_name, output in outputs.items():
            if self.debug:
                print(f"Target index for {head_name}: {self.heads_spec[head_name]['target_idx']}")
            target = targets[self.heads_spec[head_name]['target_idx']]
            loss_target = target
            if self.loss_ignore_background:
                loss_target = target.clone()  # Clone as original target needed in backward pass
                loss_target[loss_target == 0] = -1  # Set background class to ignore_index -1 for loss calculation
            loss = self.loss_func(output, loss_target)
            loss_per_head[f'{head_name}'] = loss
            total_loss += loss * self.loss_weights[head_name]
        
        return total_loss, loss_per_head

class Messis(pl.LightningModule, PyTorchModelHubMixin):
    def __init__(self, hparams):
        super().__init__()
        self.save_hyperparameters(hparams)

        self.model = HierarchicalClassifier(
            heads_spec=hparams['heads_spec'],
            dropout_p=hparams.get('dropout_p'),
            img_size=hparams.get('img_size'),
            patch_size=hparams.get('patch_size'),
            num_frames=hparams.get('num_frames'),
            bands=hparams.get('bands'),
            backbone_weights_path=hparams.get('backbone_weights_path'),
            freeze_backbone=hparams['freeze_backbone'],
            use_bottleneck_neck=hparams.get('use_bottleneck_neck'),
            bottleneck_reduction_factor=hparams.get('bottleneck_reduction_factor'),
            loss_ignore_background=hparams.get('loss_ignore_background'),
            debug=hparams.get('debug')
        )

    def forward(self, x):
        return self.model(x)
    
    def training_step(self, batch, batch_idx):
        return self.__step(batch, batch_idx, "train")

    def validation_step(self, batch, batch_idx):
        return self.__step(batch, batch_idx, "val")
    
    def test_step(self, batch, batch_idx):
        return self.__step(batch, batch_idx, "test")
        
    def configure_optimizers(self):
        # select case on optimizer
        match self.hparams.get('optimizer', 'Adam'):
            case 'Adam':
                optimizer = torch.optim.Adam(self.parameters(), lr=self.hparams.get('lr', 1e-3))
            case 'AdamW':
                optimizer = torch.optim.AdamW(self.parameters(), lr=self.hparams.get('lr', 1e-3), weight_decay=self.hparams.get('optimizer_weight_decay', 0.01))
            case 'SGD':
                optimizer = torch.optim.SGD(self.parameters(), lr=self.hparams.get('lr', 1e-3), momentum=self.hparams.get('optimizer_momentum', 0.9))
            case 'Lion':
                # https://github.com/lucidrains/lion-pytorch | Typically lr 3-10 times lower than Adam and weight_decay 3-10 times higher
                optimizer = Lion(self.parameters(), lr=self.hparams.get('lr', 1e-4), weight_decay=self.hparams.get('optimizer_weight_decay', 0.1))
            case _:
                raise ValueError(f"Optimizer {self.hparams.get('optimizer')} not supported")
        return optimizer

    def __step(self, batch, batch_idx, stage):
        inputs, targets = batch
        targets = torch.stack(targets[0])
        outputs = self(inputs)
        loss, loss_per_head = self.model.calculate_loss(outputs, targets)
        loss_per_head_named = {f'{stage}_loss_{head}': loss_per_head[head] for head in loss_per_head}
        loss_proportions = { f'{stage}_loss_{head}_proportion': round(loss_per_head[head].item() / loss.item(), 2) for head in loss_per_head}
        loss_detail_dict = {**loss_per_head_named, **loss_proportions}

        if self.hparams.get('debug'):
            print(f"Step Inputs shape: {safe_shape(inputs)}")
            print(f"Step Targets shape: {safe_shape(targets)}")
            print(f"Step Outputs dict keys: {outputs.keys()}")

        # NOTE: All metrics other than loss are tracked by callbacks (LogMessisMetrics)
        self.log_dict({f'{stage}_loss': loss, **loss_detail_dict}, on_step=True, on_epoch=True, prog_bar=True, logger=True)
        return {'loss': loss, 'outputs': outputs}
        
class LogConfusionMatrix(pl.Callback):
    def __init__(self, hparams, dataset_info_file, debug=False):
        super().__init__()

        assert hparams.get('heads_spec') is not None, "heads_spec must be defined in the hparams"
        self.tiers_dict = {k: v for k, v in hparams.get('heads_spec').items() if v.get('is_metrics_tier', False)}
        self.last_tier_name = next((k for k, v in hparams.get('heads_spec').items() if v.get('is_last_tier', False)), None)
        self.final_head_name = next((k for k, v in hparams.get('heads_spec').items() if v.get('is_final_head', False)), None)

        assert self.last_tier_name is not None, "No tier found with 'is_last_tier' set to True"
        assert self.final_head_name is not None, "No head found with 'is_final_head' set to True"

        self.tiers = list(self.tiers_dict.keys())
        self.phases = ['train', 'val', 'test']
        self.modes = ['pixelwise', 'majority']
        self.debug = debug

        if debug:
            print(f"Final head identified as: {self.final_head_name}")
            print(f"LogConfusionMatrix Metrics over | Phases: {self.phases}, Tiers: {self.tiers}, Modes: {self.modes}")
        
        with open(dataset_info_file, 'r') as f:
            self.dataset_info = json.load(f)

        # Initialize confusion matrices
        self.metrics_to_compute = ['confusion_matrix']
        self.metrics = {phase: {tier: {mode: self.__init_metrics(tier, phase) for mode in self.modes} for tier in self.tiers} for phase in self.phases}

    def __init_metrics(self, tier, phase):
        num_classes = self.tiers_dict[tier]['num_classes_to_predict']
        confusion_matrix = classification.MulticlassConfusionMatrix(num_classes=num_classes)

        return {
            'confusion_matrix': confusion_matrix
        }

    def setup(self, trainer, pl_module, stage=None):
        # Move all metrics to the correct device at the start of the training/validation
        device = pl_module.device
        for phase_metrics in self.metrics.values():
            for tier_metrics in phase_metrics.values():
                for mode_metrics in tier_metrics.values():
                    for metric in self.metrics_to_compute:
                        mode_metrics[metric].to(device)

    def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
        self.__update_confusion_matrices(trainer, pl_module, outputs, batch, batch_idx, 'train')

    def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
        self.__update_confusion_matrices(trainer, pl_module, outputs, batch, batch_idx, 'val')

    def on_test_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
        self.__update_confusion_matrices(trainer, pl_module, outputs, batch, batch_idx, 'test')

    def __update_confusion_matrices(self, trainer, pl_module, outputs, batch, batch_idx, phase):
        if trainer.sanity_checking:
            return

        targets = torch.stack(batch[1][0]) # (tiers, batch, H, W)
        outputs = outputs['outputs'][self.final_head_name] # (batch, C, H, W)
        field_ids = batch[1][1].permute(1, 0, 2, 3)[0]

        pixelwise_outputs, majority_outputs = LogConfusionMatrix.get_pixelwise_and_majority_outputs(outputs, self.tiers, field_ids, self.dataset_info)        
        
        for preds, mode in zip([pixelwise_outputs, majority_outputs], self.modes):
            # Update all metrics
            assert len(preds) == len(targets), f"Number of predictions and targets do not match: {len(preds)} vs {len(targets)}"
            assert len(preds) == len(self.tiers), f"Number of predictions and tiers do not match: {len(preds)} vs {len(self.tiers)}"
            
            for pred, target, tier in zip(preds, targets, self.tiers):
                if self.debug:
                    print(f"Updating confusion matrix for {phase} {tier} {mode}")
                metrics = self.metrics[phase][tier][mode]
                # flatten and remove background class if the mode is majority (such that the background class is not included in the confusion matrix)
                if mode == 'majority':
                    pred = pred[target != 0]
                    target = target[target != 0]
                metrics['confusion_matrix'].update(pred, target)


    @staticmethod
    def get_pixelwise_and_majority_outputs(refinement_head_outputs, tiers, field_ids, dataset_info):
        """
        Get the pixelwise and majority predictions from the model outputs.
        The pixelwise tier predictions are derived from the refinement_head_outputs predictions. 
        The majority last tier predictions are derived from the refinement_head_outputs. And then the majority lower-tier predictions are derived from the majority highest-tier predictions.

        Also sets the background to 0 for all field majority predictions (regardless of what the model predicts for the background class).
        As this is a classification task and not a segmentation task and the field boundaries are known beforehand and not of any interest.

        Args:
            refinement_head_outputs (torch.Tensor(batch, C, H, W)): The probability outputs from the model for the refined tier.
            tiers (list of str): List of tiers e.g. ['tier1', 'tier2', 'tier3'].
            field_ids (torch.Tensor(batch, H, W)): The field IDs for each prediction.
            dataset_info (dict): The dataset information.

        Returns:
            torch.Tensor(tiers, batch, H, W): The pixelwise predictions.
            torch.Tensor(tiers, batch, H, W): The majority predictions.
        """
        
        # Assuming the highest tier is the last one in the list
        highest_tier = tiers[-1]

        pixelwise_highest_tier = torch.softmax(refinement_head_outputs, dim=1).argmax(dim=1)  # (batch, H, W)
        majority_highest_tier = LogConfusionMatrix.get_field_majority_preds(refinement_head_outputs, field_ids)

        tier_mapping = {tier: dataset_info[f'{highest_tier}_to_{tier}'] for tier in tiers if tier != highest_tier}

        pixelwise_outputs = {highest_tier: pixelwise_highest_tier}
        majority_outputs = {highest_tier: majority_highest_tier}

        # Initialize pixelwise and majority outputs for each tier
        for tier in tiers:
            if tier != highest_tier:
                pixelwise_outputs[tier] = torch.zeros_like(pixelwise_highest_tier)
                majority_outputs[tier] = torch.zeros_like(majority_highest_tier)

        # Map the highest tier to lower tiers
        for i, mappings in enumerate(zip(*tier_mapping.values())):
            for j, tier in enumerate(tier_mapping.keys()):
                pixelwise_outputs[tier][pixelwise_highest_tier == i] = mappings[j]
                majority_outputs[tier][majority_highest_tier == i] = mappings[j]

        pixelwise_outputs_stacked = torch.stack([pixelwise_outputs[tier] for tier in tiers])
        majority_outputs_stacked = torch.stack([majority_outputs[tier] for tier in tiers])

        # Ensure these are tensors
        assert isinstance(pixelwise_outputs_stacked, torch.Tensor), "pixelwise_outputs_stacked is not a tensor"
        assert isinstance(majority_outputs_stacked, torch.Tensor), "majority_outputs_stacked is not a tensor"

        return pixelwise_outputs_stacked, majority_outputs_stacked


    @staticmethod
    def get_field_majority_preds(output, field_ids):
        """
        Get the majority prediction for each field in the batch. The majority excludes the background class.

        Args:
            output (torch.Tensor(batch, C, H, W)): The probability outputs from the model (tier3_refined)
            field_ids (torch.Tensor(batch, H, W)): The field IDs for each prediction.

        Returns:
            torch.Tensor(batch, H, W): The majority predictions.
        """
        # remove the background class
        pixelwise = torch.softmax(output[:, 1:, :, :], dim=1).argmax(dim=1) + 1  # (batch, H, W)
        majority_preds = torch.zeros_like(pixelwise)
        for batch in range(len(pixelwise)):
            field_ids_batch = field_ids[batch]
            for field_id in np.unique(field_ids_batch.cpu().numpy()):
                if field_id == 0:
                    continue
                field_mask = field_ids_batch == field_id
                flattened_pred = pixelwise[batch][field_mask].view(-1)  # Flatten the prediction
                flattened_pred = flattened_pred[flattened_pred != 0]  # Exclude background class
                if len(flattened_pred) == 0:
                    continue
                mode_pred, _ = torch.mode(flattened_pred) # Compute mode prediction
                majority_preds[batch][field_mask] = mode_pred.item()
        return majority_preds

    def on_train_epoch_end(self, trainer, pl_module):
        # Log and then reset the confusion matrices after training epoch
        self.__log_and_reset_confusion_matrices(trainer, pl_module, 'train')

    def on_validation_epoch_end(self, trainer, pl_module):
        # Log and then reset the confusion matrices after validation epoch
        self.__log_and_reset_confusion_matrices(trainer, pl_module, 'val')

    def on_test_epoch_end(self, trainer, pl_module):
        # Log and then reset the confusion matrices after test epoch
        self.__log_and_reset_confusion_matrices(trainer, pl_module, 'test')

    def __log_and_reset_confusion_matrices(self, trainer, pl_module, phase):
        if trainer.sanity_checking:
            return

        for tier in self.tiers:
            for mode in self.modes:
                metrics = self.metrics[phase][tier][mode]
                confusion_matrix = metrics['confusion_matrix']
                if self.debug:
                    print(f"Logging and resetting confusion matrix for {phase} {tier} Update count: {confusion_matrix._update_count}")
                matrix = confusion_matrix.compute()  # columns are predictions and rows are targets

                # Calculate percentages
                matrix = matrix.float()
                row_sums = matrix.sum(dim=1, keepdim=True)
                matrix_percent = matrix / row_sums

                # Ensure percentages sum to 1 for each row or handle NaNs
                row_sum_check = matrix_percent.sum(dim=1)
                valid_rows = ~torch.isnan(row_sum_check)
                if valid_rows.any():
                    assert torch.allclose(row_sum_check[valid_rows], torch.ones_like(row_sum_check[valid_rows]), atol=1e-2), "Percentages do not sum to 1 for some valid rows"
                    
                # Sort the matrix and labels by the total number of instances
                sorted_indices = row_sums.squeeze().argsort(descending=True)
                matrix_percent = matrix_percent[sorted_indices, :] # sort rows
                matrix_percent = matrix_percent[:, sorted_indices] # sort columns
                class_labels = [self.dataset_info[tier][i] for i in sorted_indices]
                row_sums_sorted = row_sums[sorted_indices]

                # Check for zero rows after sorting
                zero_rows = (row_sums_sorted == 0).squeeze()

                fig, ax = plt.subplots(figsize=(matrix.size(0), matrix.size(0)), dpi=140)

                ax.matshow(matrix_percent.cpu().numpy(), cmap='viridis')

                ax.xaxis.set_major_locator(ticker.FixedLocator(range(matrix.size(1) + 1)))
                ax.yaxis.set_major_locator(ticker.FixedLocator(range(matrix.size(0) + 1)))

                ax.set_xticklabels(class_labels + [''], rotation=45)
                ax.set_yticklabels(class_labels + [''])

                # Add total number of instances to the y-axis labels
                y_labels = [f'{class_labels[i]} [n={int(row_sums_sorted[i].item()):,.0f}]'.replace(',', "'") for i in range(matrix.size(0))]
                ax.set_yticklabels(y_labels + [''])

                ax.set_xlabel('Predictions')
                ax.set_ylabel('Targets')

                # Move x-axis label and ticks to the top
                ax.xaxis.set_label_position('top')
                ax.xaxis.set_ticks_position('top')

                fig.tight_layout()

                for i in range(matrix.size(0)):
                    for j in range(matrix.size(1)):
                        if zero_rows[i]:
                            ax.text(j, i, 'N/A', ha='center', va='center', color='black')
                        else:
                            ax.text(j, i, f'{matrix_percent[i, j]:.2f}', ha='center', va='center', color='#F88379', weight='bold') # coral red
                trainer.logger.experiment.log({f"{phase}_{tier}_confusion_matrix_{mode}": wandb.Image(fig)})
                plt.close()
                confusion_matrix.reset()

class LogMessisMetrics(pl.Callback):
    def __init__(self, hparams, dataset_info_file, debug=False):
        super().__init__()

        assert hparams.get('heads_spec') is not None, "heads_spec must be defined in the hparams"
        self.tiers_dict = {k: v for k, v in hparams.get('heads_spec').items() if v.get('is_metrics_tier', False)}
        self.last_tier_name = next((k for k, v in hparams.get('heads_spec').items() if v.get('is_last_tier', False)), None)
        self.final_head_name = next((k for k, v in hparams.get('heads_spec').items() if v.get('is_final_head', False)), None)

        assert self.last_tier_name is not None, "No tier found with 'is_last_tier' set to True"
        assert self.final_head_name is not None, "No head found with 'is_final_head' set to True"

        self.tiers = list(self.tiers_dict.keys())
        self.phases = ['train', 'val', 'test']
        self.modes = ['pixelwise', 'majority']
        self.debug = debug

        if debug:
            print(f"Last tier identified as: {self.last_tier_name}")
            print(f"Final head identified as: {self.final_head_name}")
            print(f"LogMessisMetrics Metrics over | Phases: {self.phases}, Tiers: {self.tiers}, Modes: {self.modes}")

        with open(dataset_info_file, 'r') as f:
            self.dataset_info = json.load(f)

        # Initialize metrics
        self.metrics_to_compute = ['accuracy', 'weighted_accuracy', 'precision', 'weighted_precision', 'recall', 'weighted_recall' ,'f1', 'weighted_f1', 'cohen_kappa']
        self.metrics = {phase: {tier: {mode: self.__init_metrics(tier, phase) for mode in self.modes} for tier in self.tiers} for phase in self.phases}
        self.images_to_log = {phase: {mode: None for mode in self.modes} for phase in self.phases}
        self.images_to_log_targets = {phase: None for phase in self.phases}
        self.field_ids_to_log_targets = {phase: None for phase in self.phases}
        self.inputs_to_log = {phase: None for phase in self.phases}

    def __init_metrics(self, tier, phase):
        num_classes = self.tiers_dict[tier]['num_classes_to_predict']

        accuracy = classification.MulticlassAccuracy(num_classes=num_classes, average='macro')
        weighted_accuracy = classification.MulticlassAccuracy(num_classes=num_classes, average='weighted')
        per_class_accuracies = {
            class_index: classification.BinaryAccuracy() for class_index in range(num_classes)
        }
        precision = classification.MulticlassPrecision(num_classes=num_classes, average='macro')
        weighted_precision = classification.MulticlassPrecision(num_classes=num_classes, average='weighted')
        recall = classification.MulticlassRecall(num_classes=num_classes, average='macro')
        weighted_recall = classification.MulticlassRecall(num_classes=num_classes, average='weighted')
        f1 = classification.MulticlassF1Score(num_classes=num_classes, average='macro')
        weighted_f1 = classification.MulticlassF1Score(num_classes=num_classes, average='weighted')
        cohen_kappa = classification.MulticlassCohenKappa(num_classes=num_classes)

        return {
            'accuracy': accuracy,
            'weighted_accuracy': weighted_accuracy,
            'per_class_accuracies': per_class_accuracies,
            'precision': precision,
            'weighted_precision': weighted_precision,
            'recall': recall,
            'weighted_recall': weighted_recall,
            'f1': f1,
            'weighted_f1': weighted_f1,
            'cohen_kappa': cohen_kappa
        }

    def setup(self, trainer, pl_module, stage=None):
        # Move all metrics to the correct device at the start of the training/validation
        device = pl_module.device
        for phase_metrics in self.metrics.values():
            for tier_metrics in phase_metrics.values():
                for mode_metrics in tier_metrics.values():
                    for metric in self.metrics_to_compute:
                        mode_metrics[metric].to(device)
                    for class_accuracy in mode_metrics['per_class_accuracies'].values():
                        class_accuracy.to(device)

    def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
        self.__on_batch_end(trainer, pl_module, outputs, batch, batch_idx, 'train')

    def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
        self.__on_batch_end(trainer, pl_module, outputs, batch, batch_idx, 'val')

    def on_test_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
        self.__on_batch_end(trainer, pl_module, outputs, batch, batch_idx, 'test')

    def __on_batch_end(self, trainer: pl.Trainer, pl_module, outputs, batch, batch_idx, phase):
        if trainer.sanity_checking:
            return
        if self.debug:
            print(f"{phase} batch ended. Updating metrics...")

        targets = torch.stack(batch[1][0]) # (tiers, batch, H, W)
        outputs = outputs['outputs'][self.final_head_name] # (batch, C, H, W)        
        field_ids = batch[1][1].permute(1, 0, 2, 3)[0]

        pixelwise_outputs, majority_outputs = LogConfusionMatrix.get_pixelwise_and_majority_outputs(outputs, self.tiers, field_ids, self.dataset_info)        

        for preds, mode in zip([pixelwise_outputs, majority_outputs], self.modes):

            # Update all metrics
            assert preds.shape == targets.shape, f"Shapes of predictions and targets do not match: {preds.shape} vs {targets.shape}"
            assert preds.shape[0] == len(self.tiers), f"Number of tiers in predictions and tiers do not match: {preds.shape[0]} vs {len(self.tiers)}"
        
            self.images_to_log[phase][mode] = preds[-1]
            
            for pred, target, tier in zip(preds, targets, self.tiers):
                # flatten and remove background class if the mode is majority (such that the background class is not considered in the metrics)
                if mode == 'majority':
                    pred = pred[target != 0]
                    target = target[target != 0]
                metrics = self.metrics[phase][tier][mode]
                for metric in self.metrics_to_compute:
                    metrics[metric].update(pred, target)
                    if self.debug:
                        print(f"{phase} {tier} {mode} {metric} updated. Update count: {metrics[metric]._update_count}")
                self.__update_per_class_metrics(pred, target, metrics['per_class_accuracies'])

        self.images_to_log_targets[phase] = targets[-1]
        self.field_ids_to_log_targets[phase] = field_ids
        self.inputs_to_log[phase] = batch[0]

    def __update_per_class_metrics(self, preds, targets, per_class_accuracies):
        for class_index, class_accuracy in per_class_accuracies.items():
            if not (targets == class_index).any():
                continue
            
            if class_index == 0:
                # Mask out non-background elements for background class (0)
                class_mask = targets != 0
            else:
                # Mask out background elements for other classes
                class_mask = targets == 0

            preds_fields = preds[~class_mask]
            targets_fields = targets[~class_mask]

            # Prepare for binary classification (needs to be float)
            preds_class = (preds_fields == class_index).float()
            targets_class = (targets_fields == class_index).float()

            class_accuracy.update(preds_class, targets_class)

            if self.debug:
                print(f"Shape of preds_fields: {preds_fields.shape}")
                print(f"Shape of targets_fields: {targets_fields.shape}")
                print(f"Unique values in preds_fields: {torch.unique(preds_fields)}")
                print(f"Unique values in targets_fields: {torch.unique(targets_fields)}")
                print(f"Per-class metrics for class {class_index} updated. Update count: {per_class_accuracies[class_index]._update_count}")

    def on_train_epoch_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
        self.__on_epoch_end(trainer, pl_module, 'train')

    def on_validation_epoch_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
        self.__on_epoch_end(trainer, pl_module, 'val')

    def on_test_epoch_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
        self.__on_epoch_end(trainer, pl_module, 'test')

    def __on_epoch_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule, phase):
        if trainer.sanity_checking:
            return # Skip during sanity check (avoid warning about metric compute being called before update)
        for tier in self.tiers:
            for mode in self.modes:
                metrics = self.metrics[phase][tier][mode]

                # Calculate and reset in tier: Accuracy, WeightedAccuracy, Precision, Recall, F1, Cohen's Kappa
                metrics_dict = {metric: metrics[metric].compute() for metric in self.metrics_to_compute}
                pl_module.log_dict({f"{phase}_{metric}_{tier}_{mode}": v for metric, v in metrics_dict.items()}, on_step=False, on_epoch=True)
                for metric in self.metrics_to_compute:
                    metrics[metric].reset()

                # Per-class metrics
                # NOTE: Some literature reports "per class accuracy" but what they actually mean is "per class recall".
                # Using the accuracy formula per class has no value in our imbalanced multi-class setting (TN's inflate scores!)
                # We calculate all 4 metrics. This allows us to calculate any macro/micro score later if needed.
                class_metrics = []
                class_names_mapping = self.dataset_info[tier.split('_')[0] if '_refined' in tier else tier] 
                for class_index, class_accuracy in metrics['per_class_accuracies'].items():
                    if class_accuracy._update_count == 0:
                        continue  # Skip if no updates have been made
                    tp, tn, fp, fn = class_accuracy.tp, class_accuracy.tn, class_accuracy.fp, class_accuracy.fn
                    recall = (tp / (tp + fn)).item() if tp + fn > 0 else 0
                    precision = (tp / (tp + fp)).item() if tp + fp > 0 else 0
                    f1 = (2 * (precision * recall) / (precision + recall)) if precision + recall > 0 else 0
                    n_of_class = (tp + fn).item()
                    class_metrics.append([class_index, class_names_mapping[class_index], precision, recall, f1, class_accuracy.compute().item(), n_of_class])
                    class_accuracy.reset()
                wandb_table = wandb.Table(data=class_metrics, columns=["Class Index", "Class Name", "Precision", "Recall", "F1", "Accuracy", "N"])
                trainer.logger.experiment.log({f"{phase}_per_class_metrics_{tier}_{mode}": wandb_table})

        # use the same n_classes for all images, such that they are comparable
        n_classes = max([
            torch.max(self.images_to_log_targets[phase]),
            torch.max(self.images_to_log[phase]["majority"]),
            torch.max(self.images_to_log[phase]["pixelwise"])
        ])
        images     = [LogMessisMetrics.process_images(self.images_to_log[phase][mode], n_classes) for mode in self.modes]
        images.append(LogMessisMetrics.create_positive_negative_image(self.images_to_log[phase]["majority"], self.images_to_log_targets[phase]))
        images.append(LogMessisMetrics.process_images(self.images_to_log_targets[phase], n_classes))
        images.append(LogMessisMetrics.process_images(self.field_ids_to_log_targets[phase].cpu()))

        examples = []
        for i in range(len(images[0])):
            example = np.concatenate([img[i] for img in images], axis=0)
            examples.append(wandb.Image(example, caption=f"From Top to Bottom: {self.modes[0]}, {self.modes[1]}, right/wrong classifications, target, fields"))

        trainer.logger.experiment.log({f"{phase}_examples": examples})

        # Log segmentation masks
        batch_input_data = self.inputs_to_log[phase].cpu() # shape [BS, 6, N_TIMESTEPS, 224, 224]
        ground_truth_masks = self.images_to_log_targets[phase].cpu().numpy()
        pixel_wise_masks = self.images_to_log[phase]["pixelwise"].cpu().numpy()
        field_majority_masks = self.images_to_log[phase]["majority"].cpu().numpy()
        correctness_masks = self.create_positive_negative_segmentation_mask(field_majority_masks, ground_truth_masks)
        class_labels = {idx: name for idx, name in enumerate(self.dataset_info[self.last_tier_name])}

        segmentation_masks = []
        for input_data, ground_truth_mask, pixel_wise_mask, field_majority_mask, correctness_mask in zip(batch_input_data, ground_truth_masks, pixel_wise_masks, field_majority_masks, correctness_masks):
            middle_timestep_index = input_data.shape[1] // 2  # Get the middle timestamp index
            gamma = 2.5  # Gamma for brightness adjustment
            rgb_image = input_data[:3, middle_timestep_index, :, :].permute(1, 2, 0).numpy()  # Shape [224, 224, 3]
            rgb_image = (rgb_image - rgb_image.min()) / (rgb_image.max() - rgb_image.min())
            rgb_image = np.power(rgb_image, 1.0 / gamma)
            rgb_image = (rgb_image * 255).astype(np.uint8)

            mask_img = wandb.Image(
                rgb_image,
                masks={
                    "predictions_pixel_wise": {"mask_data": pixel_wise_mask, "class_labels": class_labels},
                    "predictions_field_majority": {"mask_data": field_majority_mask, "class_labels": class_labels},
                    "ground_truth": {"mask_data": ground_truth_mask, "class_labels": class_labels},
                    "correctness": {"mask_data": correctness_mask, "class_labels": { 0: "Background", 1: "Wrong", 2: "Right" }},
                },
            )
            segmentation_masks.append(mask_img)

        trainer.logger.experiment.log({f"{phase}_segmentation_mask": segmentation_masks})

        if self.debug:
            print(f"{phase} epoch ended. Logging & resetting metrics...", trainer.sanity_checking)

    @staticmethod
    def create_positive_negative_segmentation_mask(field_majority_masks, ground_truth_masks):
        """
        Create a tensor that shows the positive and negative classifications of the model.

        Args:
            field_majority_masks (np.ndarray): The field majority masks generated by the model.
            ground_truth_masks (np.ndarray): The ground truth masks.

        Returns:
            np.ndarray: An array with values:
                - 0 where the target is 0,
                - 2 where the prediction matches the target,
                - 1 where the prediction does not match the target.
        """
        correctness_mask = np.zeros_like(ground_truth_masks, dtype=int)

        matches = (field_majority_masks == ground_truth_masks) & (ground_truth_masks != 0)
        correctness_mask[matches] = 2

        mismatches = (field_majority_masks != ground_truth_masks) & (ground_truth_masks != 0)
        correctness_mask[mismatches] = 1

        return correctness_mask

    @staticmethod
    def create_positive_negative_image(generated_images, target_images):
        """
        Create an image that shows the positive and negative classifications of the model.

        Args:
            generated_images (torch.Tensor): The images generated by the model.
            target_images (torch.Tensor): The target images.

        Returns:
            list: A list of processed images.
        """
        classification_masks = generated_images == target_images
        processed_imgs = []
        for mask, target in zip(classification_masks, target_images):
            # color the background white, right classifications green, wrong classifications red
            colored_img = torch.zeros((mask.shape[0], mask.shape[1], 3), dtype=torch.uint8)
            mask = mask.bool()  # Convert to boolean tensor
            colored_img[mask] = torch.tensor([0, 255, 0], dtype=torch.uint8)
            colored_img[~mask] = torch.tensor([255, 0, 0], dtype=torch.uint8)
            colored_img[target == 0] = torch.tensor([0, 0, 0], dtype=torch.uint8)
            processed_imgs.append(colored_img.cpu())
        return processed_imgs

    @staticmethod
    def process_images(imgs, max=None):
        """
        Process a batch of images to be logged on wandb.

        Args:
            imgs (torch.Tensor): A batch of images with shape (B, H, W) to be processed.
            max (float, optional): The maximum value to normalize the images. Defaults to None. If None, the maximum value in the batch is used.
        """
        if max is None:
            max = np.max(imgs.cpu().numpy())
        normalized_img = imgs / max
        processed_imgs = []
        for img in normalized_img.cpu().numpy():
            if max < 60:
                cmap = ListedColormap(plt.get_cmap('tab20').colors + plt.get_cmap('tab20b').colors + plt.get_cmap('tab20c').colors)
            else:
                cmap = plt.get_cmap('viridis')
            colored_img = cmap(img)
            colored_img[img == 0] = [0, 0, 0, 1]
            colored_img_uint8 = (colored_img[:, :, :3] * 255).astype(np.uint8)
            processed_imgs.append(colored_img_uint8)
        return processed_imgs