Spaces:
Sleeping
Sleeping
File size: 19,247 Bytes
5b24075 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 |
from safetensors import safe_open
import torch
import torch.nn as nn
import numpy as np
from timm.models.layers import to_2tuple
from timm.models.vision_transformer import Block
# Taken and adapted from Pritvhi `geospatial_fm.py`, for the purpose of avoiding MMCV/MMSegmentation dependencies
def _convTranspose2dOutput(
input_size: int,
stride: int,
padding: int,
dilation: int,
kernel_size: int,
output_padding: int,
):
"""
Calculate the output size of a ConvTranspose2d.
Taken from: https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html
"""
return (
(input_size - 1) * stride
- 2 * padding
+ dilation * (kernel_size - 1)
+ output_padding
+ 1
)
def get_1d_sincos_pos_embed_from_grid(embed_dim: int, pos: torch.Tensor):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float32)
omega /= embed_dim / 2.0
omega = 1.0 / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb
def get_3d_sincos_pos_embed(embed_dim: int, grid_size: tuple, cls_token: bool = False):
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# Position embedding utils
# --------------------------------------------------------
"""
grid_size: 3d tuple of grid size: t, h, w
return:
pos_embed: L, D
"""
assert embed_dim % 16 == 0
t_size, h_size, w_size = grid_size
w_embed_dim = embed_dim // 16 * 6
h_embed_dim = embed_dim // 16 * 6
t_embed_dim = embed_dim // 16 * 4
w_pos_embed = get_1d_sincos_pos_embed_from_grid(w_embed_dim, np.arange(w_size))
h_pos_embed = get_1d_sincos_pos_embed_from_grid(h_embed_dim, np.arange(h_size))
t_pos_embed = get_1d_sincos_pos_embed_from_grid(t_embed_dim, np.arange(t_size))
w_pos_embed = np.tile(w_pos_embed, (t_size * h_size, 1))
h_pos_embed = np.tile(np.repeat(h_pos_embed, w_size, axis=0), (t_size, 1))
t_pos_embed = np.repeat(t_pos_embed, h_size * w_size, axis=0)
pos_embed = np.concatenate((w_pos_embed, h_pos_embed, t_pos_embed), axis=1)
if cls_token:
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
return pos_embed
class Norm2d(nn.Module):
def __init__(self, embed_dim: int):
super().__init__()
self.ln = nn.LayerNorm(embed_dim, eps=1e-6)
def forward(self, x):
x = x.permute(0, 2, 3, 1)
x = self.ln(x)
x = x.permute(0, 3, 1, 2).contiguous()
return x
class PatchEmbed(nn.Module):
"""Frames of 2D Images to Patch Embedding
The 3D version of timm.models.vision_transformer.PatchEmbed
"""
def __init__(
self,
img_size: int = 224,
patch_size: int = 16,
num_frames: int = 3,
tubelet_size: int = 1,
in_chans: int = 3,
embed_dim: int = 768,
norm_layer: nn.Module = None,
flatten: bool = True,
bias: bool = True,
):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.num_frames = num_frames
self.tubelet_size = tubelet_size
self.grid_size = (
num_frames // tubelet_size,
img_size[0] // patch_size[0],
img_size[1] // patch_size[1],
)
self.num_patches = self.grid_size[0] * self.grid_size[1] * self.grid_size[2]
self.flatten = flatten
self.proj = nn.Conv3d(
in_chans,
embed_dim,
kernel_size=(tubelet_size, patch_size[0], patch_size[1]),
stride=(tubelet_size, patch_size[0], patch_size[1]),
bias=bias,
)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
def forward(self, x):
B, C, T, H, W = x.shape
assert (
H == self.img_size[0]
), f"Input image height ({H}) doesn't match model ({self.img_size[0]})."
assert (
W == self.img_size[1]
), f"Input image width ({W}) doesn't match model ({self.img_size[1]})."
x = self.proj(x)
Hp, Wp = x.shape[3], x.shape[4]
if self.flatten:
x = x.flatten(2).transpose(1, 2) # B,C,T,H,W -> B,C,L -> B,L,C
x = self.norm(x)
return x, Hp, Wp
class ConvTransformerTokensToEmbeddingNeck(nn.Module):
"""
Neck that transforms the token-based output of transformer into a single embedding suitable for processing with standard layers.
Performs 4 ConvTranspose2d operations on the rearranged input with kernel_size=2 and stride=2
"""
def __init__(
self,
embed_dim: int,
output_embed_dim: int,
# num_frames: int = 1,
Hp: int = 14,
Wp: int = 14,
drop_cls_token: bool = True,
):
"""
Args:
embed_dim (int): Input embedding dimension
output_embed_dim (int): Output embedding dimension
Hp (int, optional): Height (in patches) of embedding to be upscaled. Defaults to 14.
Wp (int, optional): Width (in patches) of embedding to be upscaled. Defaults to 14.
drop_cls_token (bool, optional): Whether there is a cls_token, which should be dropped. This assumes the cls token is the first token. Defaults to True.
"""
super().__init__()
self.drop_cls_token = drop_cls_token
self.Hp = Hp
self.Wp = Wp
self.H_out = Hp
self.W_out = Wp
# self.num_frames = num_frames
kernel_size = 2
stride = 2
dilation = 1
padding = 0
output_padding = 0
for _ in range(4):
self.H_out = _convTranspose2dOutput(
self.H_out, stride, padding, dilation, kernel_size, output_padding
)
self.W_out = _convTranspose2dOutput(
self.W_out, stride, padding, dilation, kernel_size, output_padding
)
self.embed_dim = embed_dim
self.output_embed_dim = output_embed_dim
self.fpn1 = nn.Sequential(
nn.ConvTranspose2d(
self.embed_dim,
self.output_embed_dim,
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
padding=padding,
output_padding=output_padding,
),
Norm2d(self.output_embed_dim),
nn.GELU(),
nn.ConvTranspose2d(
self.output_embed_dim,
self.output_embed_dim,
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
padding=padding,
output_padding=output_padding,
),
)
self.fpn2 = nn.Sequential(
nn.ConvTranspose2d(
self.output_embed_dim,
self.output_embed_dim,
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
padding=padding,
output_padding=output_padding,
),
Norm2d(self.output_embed_dim),
nn.GELU(),
nn.ConvTranspose2d(
self.output_embed_dim,
self.output_embed_dim,
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
padding=padding,
output_padding=output_padding,
),
)
def forward(self, x):
x = x[0]
if self.drop_cls_token:
x = x[:, 1:, :]
x = x.permute(0, 2, 1).reshape(x.shape[0], -1, self.Hp, self.Wp)
x = self.fpn1(x)
x = self.fpn2(x)
x = x.reshape((-1, self.output_embed_dim, self.H_out, self.W_out))
out = tuple([x])
return out
class ConvTransformerTokensToEmbeddingBottleneckNeck(nn.Module):
"""
Neck that transforms the token-based output of transformer into a single embedding suitable for processing with standard layers.
Performs ConvTranspose2d operations with bottleneck layers to reduce channels.
"""
def __init__(
self,
embed_dim: int,
output_embed_dim: int,
Hp: int = 14,
Wp: int = 14,
drop_cls_token: bool = True,
bottleneck_reduction_factor: int = 4,
):
"""
Args:
embed_dim (int): Input embedding dimension
output_embed_dim (int): Output embedding dimension
Hp (int, optional): Height (in patches) of embedding to be upscaled. Defaults to 14.
Wp (int, optional): Width (in patches) of embedding to be upscaled. Defaults to 14.
drop_cls_token (bool, optional): Whether there is a cls_token, which should be dropped. Defaults to True.
bottleneck_ratio (int, optional): Ratio to reduce channels in bottleneck layers. Defaults to 4.
"""
super().__init__()
self.drop_cls_token = drop_cls_token
self.Hp = Hp
self.Wp = Wp
self.H_out = Hp
self.W_out = Wp
kernel_size = 2
stride = 2
dilation = 1
padding = 0
output_padding = 0
for _ in range(4):
self.H_out = _convTranspose2dOutput(
self.H_out, stride, padding, dilation, kernel_size, output_padding
)
self.W_out = _convTranspose2dOutput(
self.W_out, stride, padding, dilation, kernel_size, output_padding
)
self.embed_dim = embed_dim
self.output_embed_dim = output_embed_dim
bottleneck_dim = self.embed_dim // bottleneck_reduction_factor
self.fpn1 = nn.Sequential(
nn.Conv2d(
self.embed_dim,
bottleneck_dim,
kernel_size=1
),
Norm2d(bottleneck_dim),
nn.GELU(),
nn.ConvTranspose2d(
bottleneck_dim,
bottleneck_dim,
kernel_size=kernel_size,
stride=stride,
padding=padding,
output_padding=output_padding
),
Norm2d(bottleneck_dim),
nn.GELU(),
nn.ConvTranspose2d(
bottleneck_dim,
bottleneck_dim,
kernel_size=kernel_size,
stride=stride,
padding=padding,
output_padding=output_padding
),
Norm2d(bottleneck_dim),
nn.GELU(),
nn.Conv2d(
bottleneck_dim,
self.output_embed_dim,
kernel_size=1
),
Norm2d(self.output_embed_dim),
nn.GELU(),
)
self.fpn2 = nn.Sequential(
nn.Conv2d(
self.output_embed_dim,
bottleneck_dim,
kernel_size=1
),
Norm2d(bottleneck_dim),
nn.GELU(),
nn.ConvTranspose2d(
bottleneck_dim,
bottleneck_dim,
kernel_size=kernel_size,
stride=stride,
padding=padding,
output_padding=output_padding
),
Norm2d(bottleneck_dim),
nn.GELU(),
nn.ConvTranspose2d(
bottleneck_dim,
bottleneck_dim,
kernel_size=kernel_size,
stride=stride,
padding=padding,
output_padding=output_padding
),
Norm2d(bottleneck_dim),
nn.GELU(),
nn.Conv2d(
bottleneck_dim,
self.output_embed_dim,
kernel_size=1
),
Norm2d(self.output_embed_dim),
nn.GELU(),
)
def forward(self, x):
x = x[0]
if self.drop_cls_token:
x = x[:, 1:, :]
x = x.permute(0, 2, 1).reshape(x.shape[0], -1, self.Hp, self.Wp)
x = self.fpn1(x)
x = self.fpn2(x)
x = x.reshape((-1, self.output_embed_dim, self.H_out, self.W_out))
out = tuple([x])
return out
class TemporalViTEncoder(nn.Module):
"""Encoder from an ViT with capability to take in temporal input.
This class defines an encoder taken from a ViT architecture.
"""
def __init__(
self,
img_size: int = 224,
patch_size: int = 16,
num_frames: int = 1,
tubelet_size: int = 1,
in_chans: int = 3,
embed_dim: int = 1024,
depth: int = 24,
num_heads: int = 16,
mlp_ratio: float = 4.0,
norm_layer: nn.Module = nn.LayerNorm,
norm_pix_loss: bool = False,
pretrained: str = None,
debug=False
):
"""
Args:
img_size (int, optional): Input image size. Defaults to 224.
patch_size (int, optional): Patch size to be used by the transformer. Defaults to 16.
num_frames (int, optional): Number of frames (temporal dimension) to be input to the encoder. Defaults to 1.
tubelet_size (int, optional): Tubelet size used in patch embedding. Defaults to 1.
in_chans (int, optional): Number of input channels. Defaults to 3.
embed_dim (int, optional): Embedding dimension. Defaults to 1024.
depth (int, optional): Encoder depth. Defaults to 24.
num_heads (int, optional): Number of heads used in the encoder blocks. Defaults to 16.
mlp_ratio (float, optional): Ratio to be used for the size of the MLP in encoder blocks. Defaults to 4.0.
norm_layer (nn.Module, optional): Norm layer to be used. Defaults to nn.LayerNorm.
norm_pix_loss (bool, optional): Whether to use Norm Pix Loss. Defaults to False.
pretrained (str, optional): Path to pretrained encoder weights. Defaults to None.
"""
super().__init__()
# --------------------------------------------------------------------------
# MAE encoder specifics
self.embed_dim = embed_dim
self.patch_embed = PatchEmbed(
img_size, patch_size, num_frames, tubelet_size, in_chans, embed_dim
)
num_patches = self.patch_embed.num_patches
self.num_frames = num_frames
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(
torch.zeros(1, num_patches + 1, embed_dim), requires_grad=False
) # fixed sin-cos embedding
self.blocks = nn.ModuleList(
[
Block(
embed_dim,
num_heads,
mlp_ratio,
qkv_bias=True,
norm_layer=norm_layer,
)
for _ in range(depth)
]
)
self.norm = norm_layer(embed_dim)
self.norm_pix_loss = norm_pix_loss
self.pretrained = pretrained
self.debug = debug
self.initialize_weights()
def initialize_weights(self):
# initialize (and freeze) pos_embed by sin-cos embedding
pos_embed = get_3d_sincos_pos_embed(
self.pos_embed.shape[-1], self.patch_embed.grid_size, cls_token=True
)
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
# initialize patch_embed like nn.Linear (instead of nn.Conv2d)
w = self.patch_embed.proj.weight.data
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
# TODO: FIX huggingface config
# load pretrained weights
# if self.pretrained:
# if self.pretrained.endswith('.safetensors'):
# self._load_safetensors_weights()
# elif self.pretrained == 'huggingface':
# print("TemporalViTEncoder | Using HuggingFace pretrained weights.")
# else:
# self._load_pt_weights()
# else:
# self.apply(self._init_weights)
def _load_safetensors_weights(self):
with safe_open(self.pretrained, framework='pt', device='cpu') as f:
checkpoint_state_dict = {k: torch.tensor(v) for k, v in f.items()}
missing_keys, unexpected_keys = self.load_state_dict(checkpoint_state_dict, strict=False)
if missing_keys:
print("TemporalViTEncoder | Warning: Missing keys in the state dict:", missing_keys)
if unexpected_keys:
print("TemporalViTEncoder | Warning: Unexpected keys in the state dict:", unexpected_keys)
print(f"TemporalViTEncoder | Loaded pretrained weights from '{self.pretrained}' (safetensors).")
def _load_pt_weights(self):
checkpoint = torch.load(self.pretrained, map_location='cpu')
checkpoint_state_dict = checkpoint.get('state_dict', checkpoint)
missing_keys, unexpected_keys = self.load_state_dict(checkpoint_state_dict, strict=False)
if missing_keys:
print("TemporalViTEncoder | Warning: Missing keys in the state dict:", missing_keys)
if unexpected_keys:
print("TemporalViTEncoder | Warning: Unexpected keys in the state dict:", unexpected_keys)
print(f"TemporalViTEncoder | Loaded pretrained weights from '{self.pretrained}' (pt file).")
def _init_weights(self, m):
print("TemporalViTEncoder | Newly Initializing weights...")
if isinstance(m, nn.Linear):
# we use xavier_uniform following official JAX ViT:
torch.nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward(self, x):
if self.debug:
print('TemporalViTEncoder IN:', x.shape)
# embed patches
x, _, _ = self.patch_embed(x)
if self.debug:
print('TemporalViTEncoder EMBED:', x.shape)
# add pos embed w/o cls token
x = x + self.pos_embed[:, 1:, :]
# append cls token
cls_token = self.cls_token + self.pos_embed[:, :1, :]
cls_tokens = cls_token.expand(x.shape[0], -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
# apply Transformer blocks
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
if self.debug:
print('TemporalViTEncoder OUT:', x.shape)
return tuple([x]) |