File size: 19,247 Bytes
5b24075
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
from safetensors import safe_open
import torch
import torch.nn as nn
import numpy as np

from timm.models.layers import to_2tuple
from timm.models.vision_transformer import Block

# Taken and adapted from Pritvhi `geospatial_fm.py`, for the purpose of avoiding MMCV/MMSegmentation dependencies

def _convTranspose2dOutput(
    input_size: int,
    stride: int,
    padding: int,
    dilation: int,
    kernel_size: int,
    output_padding: int,
):
    """
    Calculate the output size of a ConvTranspose2d.
    Taken from: https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html
    """
    return (
        (input_size - 1) * stride
        - 2 * padding
        + dilation * (kernel_size - 1)
        + output_padding
        + 1
    )


def get_1d_sincos_pos_embed_from_grid(embed_dim: int, pos: torch.Tensor):
    """
    embed_dim: output dimension for each position
    pos: a list of positions to be encoded: size (M,)
    out: (M, D)
    """
    assert embed_dim % 2 == 0
    omega = np.arange(embed_dim // 2, dtype=np.float32)
    omega /= embed_dim / 2.0
    omega = 1.0 / 10000**omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum("m,d->md", pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out)  # (M, D/2)
    emb_cos = np.cos(out)  # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb


def get_3d_sincos_pos_embed(embed_dim: int, grid_size: tuple, cls_token: bool = False):
    # Copyright (c) Meta Platforms, Inc. and affiliates.
    # All rights reserved.

    # This source code is licensed under the license found in the
    # LICENSE file in the root directory of this source tree.
    # --------------------------------------------------------
    # Position embedding utils
    # --------------------------------------------------------
    """
    grid_size: 3d tuple of grid size: t, h, w
    return:
    pos_embed: L, D
    """

    assert embed_dim % 16 == 0

    t_size, h_size, w_size = grid_size

    w_embed_dim = embed_dim // 16 * 6
    h_embed_dim = embed_dim // 16 * 6
    t_embed_dim = embed_dim // 16 * 4

    w_pos_embed = get_1d_sincos_pos_embed_from_grid(w_embed_dim, np.arange(w_size))
    h_pos_embed = get_1d_sincos_pos_embed_from_grid(h_embed_dim, np.arange(h_size))
    t_pos_embed = get_1d_sincos_pos_embed_from_grid(t_embed_dim, np.arange(t_size))

    w_pos_embed = np.tile(w_pos_embed, (t_size * h_size, 1))
    h_pos_embed = np.tile(np.repeat(h_pos_embed, w_size, axis=0), (t_size, 1))
    t_pos_embed = np.repeat(t_pos_embed, h_size * w_size, axis=0)

    pos_embed = np.concatenate((w_pos_embed, h_pos_embed, t_pos_embed), axis=1)

    if cls_token:
        pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
    return pos_embed


class Norm2d(nn.Module):
    def __init__(self, embed_dim: int):
        super().__init__()
        self.ln = nn.LayerNorm(embed_dim, eps=1e-6)

    def forward(self, x):
        x = x.permute(0, 2, 3, 1)
        x = self.ln(x)
        x = x.permute(0, 3, 1, 2).contiguous()
        return x
    

class PatchEmbed(nn.Module):
    """Frames of 2D Images to Patch Embedding
    The 3D version of timm.models.vision_transformer.PatchEmbed
    """

    def __init__(
        self,
        img_size: int = 224,
        patch_size: int = 16,
        num_frames: int = 3,
        tubelet_size: int = 1,
        in_chans: int = 3,
        embed_dim: int = 768,
        norm_layer: nn.Module = None,
        flatten: bool = True,
        bias: bool = True,
    ):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_frames = num_frames
        self.tubelet_size = tubelet_size
        self.grid_size = (
            num_frames // tubelet_size,
            img_size[0] // patch_size[0],
            img_size[1] // patch_size[1],
        )
        self.num_patches = self.grid_size[0] * self.grid_size[1] * self.grid_size[2]
        self.flatten = flatten

        self.proj = nn.Conv3d(
            in_chans,
            embed_dim,
            kernel_size=(tubelet_size, patch_size[0], patch_size[1]),
            stride=(tubelet_size, patch_size[0], patch_size[1]),
            bias=bias,
        )
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        B, C, T, H, W = x.shape
        assert (
            H == self.img_size[0]
        ), f"Input image height ({H}) doesn't match model ({self.img_size[0]})."
        assert (
            W == self.img_size[1]
        ), f"Input image width ({W}) doesn't match model ({self.img_size[1]})."
        x = self.proj(x)
        Hp, Wp = x.shape[3], x.shape[4]
        if self.flatten:
            x = x.flatten(2).transpose(1, 2)  # B,C,T,H,W -> B,C,L -> B,L,C
        x = self.norm(x)
        return x, Hp, Wp


class ConvTransformerTokensToEmbeddingNeck(nn.Module):
    """
    Neck that transforms the token-based output of transformer into a single embedding suitable for processing with standard layers.
    Performs 4 ConvTranspose2d operations on the rearranged input with kernel_size=2 and stride=2
    """

    def __init__(
        self,
        embed_dim: int,
        output_embed_dim: int,
        # num_frames: int = 1,
        Hp: int = 14,
        Wp: int = 14,
        drop_cls_token: bool = True,
    ):
        """

        Args:
            embed_dim (int): Input embedding dimension
            output_embed_dim (int): Output embedding dimension
            Hp (int, optional): Height (in patches) of embedding to be upscaled. Defaults to 14.
            Wp (int, optional): Width (in patches) of embedding to be upscaled. Defaults to 14.
            drop_cls_token (bool, optional): Whether there is a cls_token, which should be dropped. This assumes the cls token is the first token. Defaults to True.
        """
        super().__init__()
        self.drop_cls_token = drop_cls_token
        self.Hp = Hp
        self.Wp = Wp
        self.H_out = Hp
        self.W_out = Wp
        # self.num_frames = num_frames

        kernel_size = 2
        stride = 2
        dilation = 1
        padding = 0
        output_padding = 0
        for _ in range(4):
            self.H_out = _convTranspose2dOutput(
                self.H_out, stride, padding, dilation, kernel_size, output_padding
            )
            self.W_out = _convTranspose2dOutput(
                self.W_out, stride, padding, dilation, kernel_size, output_padding
            )

        self.embed_dim = embed_dim
        self.output_embed_dim = output_embed_dim
        self.fpn1 = nn.Sequential(
            nn.ConvTranspose2d(
                self.embed_dim,
                self.output_embed_dim,
                kernel_size=kernel_size,
                stride=stride,
                dilation=dilation,
                padding=padding,
                output_padding=output_padding,
            ),
            Norm2d(self.output_embed_dim),
            nn.GELU(),
            nn.ConvTranspose2d(
                self.output_embed_dim,
                self.output_embed_dim,
                kernel_size=kernel_size,
                stride=stride,
                dilation=dilation,
                padding=padding,
                output_padding=output_padding,
            ),
        )
        self.fpn2 = nn.Sequential(
            nn.ConvTranspose2d(
                self.output_embed_dim,
                self.output_embed_dim,
                kernel_size=kernel_size,
                stride=stride,
                dilation=dilation,
                padding=padding,
                output_padding=output_padding,
            ),
            Norm2d(self.output_embed_dim),
            nn.GELU(),
            nn.ConvTranspose2d(
                self.output_embed_dim,
                self.output_embed_dim,
                kernel_size=kernel_size,
                stride=stride,
                dilation=dilation,
                padding=padding,
                output_padding=output_padding,
            ),
        )

    def forward(self, x):
        x = x[0]
        if self.drop_cls_token:
            x = x[:, 1:, :]
        x = x.permute(0, 2, 1).reshape(x.shape[0], -1, self.Hp, self.Wp)

        x = self.fpn1(x)
        x = self.fpn2(x)

        x = x.reshape((-1, self.output_embed_dim, self.H_out, self.W_out))
        out = tuple([x])
        return out

class ConvTransformerTokensToEmbeddingBottleneckNeck(nn.Module):
    """
    Neck that transforms the token-based output of transformer into a single embedding suitable for processing with standard layers.
    Performs ConvTranspose2d operations with bottleneck layers to reduce channels.
    """

    def __init__(
        self,
        embed_dim: int,
        output_embed_dim: int,
        Hp: int = 14,
        Wp: int = 14,
        drop_cls_token: bool = True,
        bottleneck_reduction_factor: int = 4,
    ):
        """
        Args:
            embed_dim (int): Input embedding dimension
            output_embed_dim (int): Output embedding dimension
            Hp (int, optional): Height (in patches) of embedding to be upscaled. Defaults to 14.
            Wp (int, optional): Width (in patches) of embedding to be upscaled. Defaults to 14.
            drop_cls_token (bool, optional): Whether there is a cls_token, which should be dropped. Defaults to True.
            bottleneck_ratio (int, optional): Ratio to reduce channels in bottleneck layers. Defaults to 4.
        """
        super().__init__()
        self.drop_cls_token = drop_cls_token
        self.Hp = Hp
        self.Wp = Wp
        self.H_out = Hp
        self.W_out = Wp

        kernel_size = 2
        stride = 2
        dilation = 1
        padding = 0
        output_padding = 0
        for _ in range(4):
            self.H_out = _convTranspose2dOutput(
                self.H_out, stride, padding, dilation, kernel_size, output_padding
            )
            self.W_out = _convTranspose2dOutput(
                self.W_out, stride, padding, dilation, kernel_size, output_padding
            )

        self.embed_dim = embed_dim
        self.output_embed_dim = output_embed_dim
        bottleneck_dim = self.embed_dim // bottleneck_reduction_factor

        self.fpn1 = nn.Sequential(
            nn.Conv2d(
                self.embed_dim,
                bottleneck_dim,
                kernel_size=1
            ),
            Norm2d(bottleneck_dim),
            nn.GELU(),
            nn.ConvTranspose2d(
                bottleneck_dim,
                bottleneck_dim,
                kernel_size=kernel_size,
                stride=stride,
                padding=padding,
                output_padding=output_padding
            ),
            Norm2d(bottleneck_dim),
            nn.GELU(),
            nn.ConvTranspose2d(
                bottleneck_dim,
                bottleneck_dim,
                kernel_size=kernel_size,
                stride=stride,
                padding=padding,
                output_padding=output_padding
            ),
            Norm2d(bottleneck_dim),
            nn.GELU(),
            nn.Conv2d(
                bottleneck_dim,
                self.output_embed_dim,
                kernel_size=1
            ),
            Norm2d(self.output_embed_dim),
            nn.GELU(),
        )

        self.fpn2 = nn.Sequential(
            nn.Conv2d(
                self.output_embed_dim,
                bottleneck_dim,
                kernel_size=1
            ),
            Norm2d(bottleneck_dim),
            nn.GELU(),
            nn.ConvTranspose2d(
                bottleneck_dim,
                bottleneck_dim,
                kernel_size=kernel_size,
                stride=stride,
                padding=padding,
                output_padding=output_padding
            ),
            Norm2d(bottleneck_dim),
            nn.GELU(),
            nn.ConvTranspose2d(
                bottleneck_dim,
                bottleneck_dim,
                kernel_size=kernel_size,
                stride=stride,
                padding=padding,
                output_padding=output_padding
            ),
            Norm2d(bottleneck_dim),
            nn.GELU(),
            nn.Conv2d(
                bottleneck_dim,
                self.output_embed_dim,
                kernel_size=1
            ),
            Norm2d(self.output_embed_dim),
            nn.GELU(),
        )

    def forward(self, x):
        x = x[0]
        if self.drop_cls_token:
            x = x[:, 1:, :]
        x = x.permute(0, 2, 1).reshape(x.shape[0], -1, self.Hp, self.Wp)

        x = self.fpn1(x)
        x = self.fpn2(x)

        x = x.reshape((-1, self.output_embed_dim, self.H_out, self.W_out))
        out = tuple([x])
        return out

class TemporalViTEncoder(nn.Module):
    """Encoder from an ViT with capability to take in temporal input.

    This class defines an encoder taken from a ViT architecture.
    """

    def __init__(
        self,
        img_size: int = 224,
        patch_size: int = 16,
        num_frames: int = 1,
        tubelet_size: int = 1,
        in_chans: int = 3,
        embed_dim: int = 1024,
        depth: int = 24,
        num_heads: int = 16,
        mlp_ratio: float = 4.0,
        norm_layer: nn.Module = nn.LayerNorm,
        norm_pix_loss: bool = False,
        pretrained: str = None,
        debug=False
    ):
        """

        Args:
            img_size (int, optional): Input image size. Defaults to 224.
            patch_size (int, optional): Patch size to be used by the transformer. Defaults to 16.
            num_frames (int, optional): Number of frames (temporal dimension) to be input to the encoder. Defaults to 1.
            tubelet_size (int, optional): Tubelet size used in patch embedding. Defaults to 1.
            in_chans (int, optional): Number of input channels. Defaults to 3.
            embed_dim (int, optional): Embedding dimension. Defaults to 1024.
            depth (int, optional): Encoder depth. Defaults to 24.
            num_heads (int, optional): Number of heads used in the encoder blocks. Defaults to 16.
            mlp_ratio (float, optional): Ratio to be used for the size of the MLP in encoder blocks. Defaults to 4.0.
            norm_layer (nn.Module, optional): Norm layer to be used. Defaults to nn.LayerNorm.
            norm_pix_loss (bool, optional): Whether to use Norm Pix Loss. Defaults to False.
            pretrained (str, optional): Path to pretrained encoder weights. Defaults to None.
        """
        super().__init__()

        # --------------------------------------------------------------------------
        # MAE encoder specifics
        self.embed_dim = embed_dim
        self.patch_embed = PatchEmbed(
            img_size, patch_size, num_frames, tubelet_size, in_chans, embed_dim
        )
        num_patches = self.patch_embed.num_patches
        self.num_frames = num_frames

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.pos_embed = nn.Parameter(
            torch.zeros(1, num_patches + 1, embed_dim), requires_grad=False
        )  # fixed sin-cos embedding

        self.blocks = nn.ModuleList(
            [
                Block(
                    embed_dim,
                    num_heads,
                    mlp_ratio,
                    qkv_bias=True,
                    norm_layer=norm_layer,
                )
                for _ in range(depth)
            ]
        )
        self.norm = norm_layer(embed_dim)

        self.norm_pix_loss = norm_pix_loss
        self.pretrained = pretrained
        self.debug = debug

        self.initialize_weights()

    def initialize_weights(self):
        # initialize (and freeze) pos_embed by sin-cos embedding
        pos_embed = get_3d_sincos_pos_embed(
            self.pos_embed.shape[-1], self.patch_embed.grid_size, cls_token=True
        )
        self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))

        # initialize patch_embed like nn.Linear (instead of nn.Conv2d)
        w = self.patch_embed.proj.weight.data
        torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))

        TODO: FIX huggingface config
        # load pretrained weights
        # if self.pretrained:
        #     if self.pretrained.endswith('.safetensors'):
        #         self._load_safetensors_weights()
        #     elif self.pretrained == 'huggingface':
        #         print("TemporalViTEncoder | Using HuggingFace pretrained weights.")
        #     else:
        #         self._load_pt_weights()
        # else:
        #     self.apply(self._init_weights)

    def _load_safetensors_weights(self):
        with safe_open(self.pretrained, framework='pt', device='cpu') as f:
            checkpoint_state_dict = {k: torch.tensor(v) for k, v in f.items()}
        missing_keys, unexpected_keys = self.load_state_dict(checkpoint_state_dict, strict=False)
        if missing_keys:
            print("TemporalViTEncoder | Warning: Missing keys in the state dict:", missing_keys)
        if unexpected_keys:
            print("TemporalViTEncoder | Warning: Unexpected keys in the state dict:", unexpected_keys)
        print(f"TemporalViTEncoder | Loaded pretrained weights from '{self.pretrained}' (safetensors).")

    def _load_pt_weights(self):
        checkpoint = torch.load(self.pretrained, map_location='cpu')
        checkpoint_state_dict = checkpoint.get('state_dict', checkpoint)
        missing_keys, unexpected_keys = self.load_state_dict(checkpoint_state_dict, strict=False)
        if missing_keys:
            print("TemporalViTEncoder | Warning: Missing keys in the state dict:", missing_keys)
        if unexpected_keys:
            print("TemporalViTEncoder | Warning: Unexpected keys in the state dict:", unexpected_keys)
        print(f"TemporalViTEncoder | Loaded pretrained weights from '{self.pretrained}' (pt file).")

    def _init_weights(self, m):
        print("TemporalViTEncoder | Newly Initializing weights...")
        if isinstance(m, nn.Linear):
            # we use xavier_uniform following official JAX ViT:
            torch.nn.init.xavier_uniform_(m.weight)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def forward(self, x):
        if self.debug:
            print('TemporalViTEncoder IN:', x.shape)

        # embed patches
        x, _, _ = self.patch_embed(x)

        if self.debug:
            print('TemporalViTEncoder EMBED:', x.shape)

        # add pos embed w/o cls token
        x = x + self.pos_embed[:, 1:, :]

        # append cls token
        cls_token = self.cls_token + self.pos_embed[:, :1, :]
        cls_tokens = cls_token.expand(x.shape[0], -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)

        # apply Transformer blocks
        for blk in self.blocks:
            x = blk(x)

        x = self.norm(x)

        if self.debug:
            print('TemporalViTEncoder OUT:', x.shape)

        return tuple([x])