import os import torch import yaml import json import rasterio from rasterio.windows import Window from rasterio.transform import rowcol from pyproj import Transformer from torchvision import transforms import numpy as np from rasterio.features import shapes from shapely.geometry import shape import geopandas as gpd from messis.messis import LogConfusionMatrix class InferenceDataLoader: def __init__(self, features_path, labels_path, field_ids_path, stats_path, window_size=224, n_timesteps=3, fold_indices=None, debug=False): self.features_path = features_path self.labels_path = labels_path self.field_ids_path = field_ids_path self.stats_path = stats_path self.window_size = window_size self.n_timesteps = n_timesteps self.fold_indices = fold_indices if fold_indices is not None else [] self.debug = debug # Load normalization stats self.means, self.stds = self.load_stats() # Set up the transformer for coordinate conversion self.transformer = Transformer.from_crs("EPSG:4326", "EPSG:32632", always_xy=True) def load_stats(self): """Load normalization statistics for dataset from YAML file.""" if self.debug: print(f"Loading mean/std stats from {self.stats_path}") assert os.path.exists(self.stats_path), f"Mean/std stats file not found at {self.stats_path}" with open(self.stats_path, 'r') as file: stats = yaml.safe_load(file) mean_list, std_list, n_list = [], [], [] for fold in self.fold_indices: key = f'fold_{fold}' if key not in stats: raise ValueError(f"Mean/std stats for fold {fold} not found in {self.stats_path}") if self.debug: print(f"Stats with selected test fold {fold}: {stats[key]} over {self.n_timesteps} timesteps.") mean_list.append(torch.tensor(stats[key]['mean'])) # list of 6 means std_list.append(torch.tensor(stats[key]['std'])) # list of 6 stds n_list.append(stats[key]['n_chips']) # list of 6 ns means, stds = [], [] for channel in range(mean_list[0].shape[0]): means.append(torch.stack([mean_list[i][channel] for i in range(len(mean_list))]).mean()) variances = torch.stack([std_list[i][channel] ** 2 for i in range(len(std_list))]) n = torch.tensor([n_list[i] for i in range(len(n_list))], dtype=torch.float32) combined_variance = torch.sum(variances * (n - 1)) / (torch.sum(n) - len(n_list)) stds.append(torch.sqrt(combined_variance)) return means * self.n_timesteps, stds * self.n_timesteps def identify_window(self, path, lon, lat): """Identify the 224x224 window centered on the clicked coordinates (lon, lat) from the specified GeoTIFF.""" with rasterio.open(path) as src: # Transform the coordinates from WGS84 to UTM (EPSG:32632) utm_x, utm_y = self.transformer.transform(lon, lat) if self.debug: print("Source Transform", src.transform) print(f"UTM X: {utm_x}, UTM Y: {utm_y}") try: px, py = rowcol(src.transform, utm_x, utm_y) except ValueError: raise ValueError("Coordinates out of bounds for this raster.") if self.debug: print(f"Row: {py}, Column: {px}") half_window_size = self.window_size // 2 row_off = px - half_window_size col_off = py - half_window_size if row_off < 0: row_off = 0 if col_off < 0: col_off = 0 if row_off + self.window_size > src.width: row_off = src.width - self.window_size if col_off + self.window_size > src.height: col_off = src.height - self.window_size window = Window(col_off, row_off, self.window_size, self.window_size) window_transform = src.window_transform(window) if self.debug: print(f"Window: {window}") print(f"Window Transform: {window_transform}") crs = src.crs return window, window_transform, crs def extract_window(self, path, window): """Extract data from the specified window from the GeoTIFF.""" with rasterio.open(path) as src: window_data = src.read(window=window) if self.debug: print(f"Extracted window data from {path}") print(f"Min: {window_data.min()}, Max: {window_data.max()}") return window_data def prepare_data_for_model(self, features_data): """Prepare the window data for model inference.""" # Convert to tensor features_data = torch.tensor(features_data, dtype=torch.float32) # Normalize normalize = transforms.Normalize(mean=self.means, std=self.stds) features_data = normalize(features_data) # Permute the dimensions if needed height, width = features_data.shape[-2:] features_data = features_data.view(self.n_timesteps, 6, height, width).permute(1, 0, 2, 3) # Add batch dimension features_data = features_data.unsqueeze(0) return features_data def get_data(self, lon, lat): """Extract, normalize, and prepare data for inference, including labels and field IDs.""" # Identify the window and get the georeferencing information window, features_transform, features_crs = self.identify_window(self.features_path, lon, lat) # Extract data from the GeoTIFF, labels, and field IDs features_data = self.extract_window(self.features_path, window) label_data = self.extract_window(self.labels_path, window) field_ids_data = self.extract_window(self.field_ids_path, window) # Prepare the window data for the model prepared_features_data = self.prepare_data_for_model(features_data) # Convert labels and field_ids to tensors (without normalization) label_data = torch.tensor(label_data, dtype=torch.long) field_ids_data = torch.tensor(field_ids_data, dtype=torch.long) # Return the prepared data along with transform and CRS return prepared_features_data, label_data, field_ids_data, features_transform, features_crs def crop_predictions_to_gdf(field_ids, targets, predictions, transform, crs, class_names): """ Convert field_ids, targets, and predictions tensors to field polygons with corresponding class reference. :param field_ids: PyTorch tensor of shape (1, 224, 224) representing individual fields :param targets: PyTorch tensor of shape (1, 224, 224) for targets :param predictions: PyTorch tensor of shape (1, 224, 224) for predictions :param transform: Affine transform for georeferencing :param crs: Coordinate reference system (CRS) of the data :param class_names: Dictionary mapping class indices to class names :return: GeoPandas DataFrame with polygons, prediction class labels, and target class labels """ field_array = field_ids.squeeze().cpu().numpy().astype(np.int32) target_array = targets.squeeze().cpu().numpy().astype(np.int8) pred_array = predictions.squeeze().cpu().numpy().astype(np.int8) polygons = [] field_values = [] target_values = [] pred_values = [] for geom, field_value in shapes(field_array, transform=transform): polygons.append(shape(geom)) field_values.append(field_value) # Get a single value from the field area for targets and predictions target_value = target_array[field_array == field_value][0] pred_value = pred_array[field_array == field_value][0] target_values.append(target_value) pred_values.append(pred_value) gdf = gpd.GeoDataFrame({ 'geometry': polygons, 'field_id': field_values, 'target': target_values, 'prediction': pred_values }, crs=crs) gdf['prediction_class'] = gdf['prediction'].apply(lambda x: class_names[x]) gdf['target_class'] = gdf['target'].apply(lambda x: class_names[x]) gdf['correct'] = gdf['target'] == gdf['prediction'] gdf = gdf[gdf.geometry.area > 250] # Threshold for small polygons return gdf def perform_inference(lon, lat, model, config, debug=False): features_path = "../data/stacked_features.tif" labels_path = "../data/labels.tif" field_ids_path = "../data/field_ids.tif" stats_path = "../data/chips_stats.yaml" loader = InferenceDataLoader(features_path, labels_path, field_ids_path, stats_path, n_timesteps=9, fold_indices=[0], debug=True) # Coordinates must be in EPSG:4326 and lon lat order - are converted to the CRS of the raster satellite_data, label_data, field_ids_data, features_transform, features_crs = loader.get_data(lon, lat) if debug: # Print the shape of the extracted data print(satellite_data.shape) print(label_data.shape) print(field_ids_data.shape) with open('./data/dataset_info.json', 'r') as file: dataset_info = json.load(file) class_names = dataset_info['tier3'] tiers_dict = {k: v for k, v in config.hparams.get('heads_spec').items() if v.get('is_metrics_tier', False)} tiers = list(tiers_dict.keys()) # Perform inference model.eval() with torch.no_grad(): output = model(satellite_data)['tier3_refinement_head'] pixelwise_outputs_stacked, majority_outputs_stacked = LogConfusionMatrix.get_pixelwise_and_majority_outputs(output, tiers, field_ids=field_ids_data, dataset_info=dataset_info) majority_tier3_predictions = majority_outputs_stacked[2] # Tier 3 predictions # Convert the predictions to a GeoDataFrame gdf = crop_predictions_to_gdf(field_ids_data, label_data, majority_tier3_predictions, features_transform, features_crs, class_names) # Simple GeoDataFrame with only the necessary columns gdf = gdf[['prediction_class', 'target_class', 'correct', 'geometry']] gdf.columns = ['Prediction', 'Target', 'Correct', 'geometry'] # gdf = gdf[gdf['Target'] != 'Background'] return gdf