File size: 6,015 Bytes
66adac7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import os
# from dotenv import load_dotenv
from chromadb.config import Settings
# https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/excel.html?highlight=xlsx#microsoft-excel
from langchain.document_loaders import CSVLoader, PDFMinerLoader, TextLoader, UnstructuredExcelLoader, Docx2txtLoader
# load_dotenv()
ROOT_DIRECTORY = os.path.dirname(os.path.realpath(__file__))
# Define the folder for storing database
SOURCE_DIRECTORY = f"{ROOT_DIRECTORY}/SOURCE_DOCUMENTS"
PERSIST_DIRECTORY = f"{ROOT_DIRECTORY}/DB"
# Can be changed to a specific number
INGEST_THREADS = os.cpu_count() or 8
# Define the Chroma settings
CHROMA_SETTINGS = Settings(
anonymized_telemetry=False,
is_persistent=True,
)
# https://python.langchain.com/en/latest/_modules/langchain/document_loaders/excel.html#UnstructuredExcelLoader
DOCUMENT_MAP = {
".txt": TextLoader,
".md": TextLoader,
".py": TextLoader,
".pdf": PDFMinerLoader,
".csv": CSVLoader,
".xls": UnstructuredExcelLoader,
".xlsx": UnstructuredExcelLoader,
".docx": Docx2txtLoader,
".doc": Docx2txtLoader,
}
# Default Instructor Model
EMBEDDING_MODEL_NAME = "hkunlp/instructor-large" # Uses 1.5 GB of VRAM (High Accuracy with lower VRAM usage)
####
#### OTHER EMBEDDING MODEL OPTIONS
####
# EMBEDDING_MODEL_NAME = "hkunlp/instructor-xl" # Uses 5 GB of VRAM (Most Accurate of all models)
# EMBEDDING_MODEL_NAME = "intfloat/e5-large-v2" # Uses 1.5 GB of VRAM (A little less accurate than instructor-large)
# EMBEDDING_MODEL_NAME = "intfloat/e5-base-v2" # Uses 0.5 GB of VRAM (A good model for lower VRAM GPUs)
# EMBEDDING_MODEL_NAME = "all-MiniLM-L6-v2" # Uses 0.2 GB of VRAM (Less accurate but fastest - only requires 150mb of vram)
####
#### MULTILINGUAL EMBEDDING MODELS
####
# EMBEDDING_MODEL_NAME = "intfloat/multilingual-e5-large" # Uses 2.5 GB of VRAM
# EMBEDDING_MODEL_NAME = "intfloat/multilingual-e5-base" # Uses 1.2 GB of VRAM
#### SELECT AN OPEN SOURCE LLM (LARGE LANGUAGE MODEL)
# Select the Model ID and model_basename
# load the LLM for generating Natural Language responses
#### GPU VRAM Memory required for LLM Models (ONLY) by Billion Parameter value (B Model)
#### Does not include VRAM used by Embedding Models - which use an additional 2GB-7GB of VRAM depending on the model.
####
#### (B Model) (float32) (float16) (GPTQ 8bit) (GPTQ 4bit)
#### 7b 28 GB 14 GB 7 GB - 9 GB 3.5 GB - 5 GB
#### 13b 52 GB 26 GB 13 GB - 15 GB 6.5 GB - 8 GB
#### 32b 130 GB 65 GB 32.5 GB - 35 GB 16.25 GB - 19 GB
#### 65b 260.8 GB 130.4 GB 65.2 GB - 67 GB 32.6 GB - - 35 GB
MODEL_ID = "TheBloke/Llama-2-7B-Chat-GGML"
MODEL_BASENAME = "llama-2-7b-chat.ggmlv3.q4_0.bin"
####
#### (FOR HF MODELS)
####
# MODEL_ID = "TheBloke/vicuna-7B-1.1-HF"
# MODEL_BASENAME = None
# MODEL_ID = "TheBloke/Wizard-Vicuna-7B-Uncensored-HF"
# MODEL_ID = "TheBloke/guanaco-7B-HF"
# MODEL_ID = 'NousResearch/Nous-Hermes-13b' # Requires ~ 23GB VRAM. Using STransformers
# alongside will 100% create OOM on 24GB cards.
# llm = load_model(device_type, model_id=model_id)
####
#### (FOR GPTQ QUANTIZED) Select a llm model based on your GPU and VRAM GB. Does not include Embedding Models VRAM usage.
####
##### 48GB VRAM Graphics Cards (RTX 6000, RTX A6000 and other 48GB VRAM GPUs) #####
### 65b GPTQ LLM Models for 48GB GPUs (*** With best embedding model: hkunlp/instructor-xl ***)
# model_id = "TheBloke/guanaco-65B-GPTQ"
# model_basename = "model.safetensors"
# model_id = "TheBloke/Airoboros-65B-GPT4-2.0-GPTQ"
# model_basename = "model.safetensors"
# model_id = "TheBloke/gpt4-alpaca-lora_mlp-65B-GPTQ"
# model_basename = "model.safetensors"
# model_id = "TheBloke/Upstage-Llama1-65B-Instruct-GPTQ"
# model_basename = "model.safetensors"
##### 24GB VRAM Graphics Cards (RTX 3090 - RTX 4090 (35% Faster) - RTX A5000 - RTX A5500) #####
### 13b GPTQ Models for 24GB GPUs (*** With best embedding model: hkunlp/instructor-xl ***)
# model_id = "TheBloke/Wizard-Vicuna-13B-Uncensored-GPTQ"
# model_basename = "Wizard-Vicuna-13B-Uncensored-GPTQ-4bit-128g.compat.no-act-order.safetensors"
# model_id = "TheBloke/vicuna-13B-v1.5-GPTQ"
# model_basename = "model.safetensors"
# model_id = "TheBloke/Nous-Hermes-13B-GPTQ"
# model_basename = "nous-hermes-13b-GPTQ-4bit-128g.no-act.order"
# model_id = "TheBloke/WizardLM-13B-V1.2-GPTQ"
# model_basename = "gptq_model-4bit-128g.safetensors
### 30b GPTQ Models for 24GB GPUs (*** Requires using intfloat/e5-base-v2 instead of hkunlp/instructor-large as embedding model ***)
# model_id = "TheBloke/Wizard-Vicuna-30B-Uncensored-GPTQ"
# model_basename = "Wizard-Vicuna-30B-Uncensored-GPTQ-4bit--1g.act.order.safetensors"
# model_id = "TheBloke/WizardLM-30B-Uncensored-GPTQ"
# model_basename = "WizardLM-30B-Uncensored-GPTQ-4bit.act-order.safetensors"
##### 8-10GB VRAM Graphics Cards (RTX 3080 - RTX 3080 Ti - RTX 3070 Ti - 3060 Ti - RTX 2000 Series, Quadro RTX 4000, 5000, 6000) #####
### (*** Requires using intfloat/e5-small-v2 instead of hkunlp/instructor-large as embedding model ***)
### 7b GPTQ Models for 8GB GPUs
# model_id = "TheBloke/Wizard-Vicuna-7B-Uncensored-GPTQ"
# model_basename = "Wizard-Vicuna-7B-Uncensored-GPTQ-4bit-128g.no-act.order.safetensors"
# model_id = "TheBloke/WizardLM-7B-uncensored-GPTQ"
# model_basename = "WizardLM-7B-uncensored-GPTQ-4bit-128g.compat.no-act-order.safetensors"
# model_id = "TheBloke/wizardLM-7B-GPTQ"
# model_basename = "wizardLM-7B-GPTQ-4bit.compat.no-act-order.safetensors"
####
#### (FOR GGML) (Quantized cpu+gpu+mps) models - check if they support llama.cpp
####
# MODEL_ID = "TheBloke/wizard-vicuna-13B-GGML"
# MODEL_BASENAME = "wizard-vicuna-13B.ggmlv3.q4_0.bin"
# MODEL_BASENAME = "wizard-vicuna-13B.ggmlv3.q6_K.bin"
# MODEL_BASENAME = "wizard-vicuna-13B.ggmlv3.q2_K.bin"
# MODEL_ID = "TheBloke/orca_mini_3B-GGML"
# MODEL_BASENAME = "orca-mini-3b.ggmlv3.q4_0.bin"
|