Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,9 @@
|
|
1 |
-
#
|
2 |
-
#
|
3 |
-
|
|
|
|
|
|
|
4 |
|
5 |
|
6 |
# Install Dependences
|
@@ -9,22 +12,17 @@
|
|
9 |
# !pip install ipywidgets
|
10 |
# !pip install gradio # see setup for installing gradio
|
11 |
|
12 |
-
# Import Dependencies
|
13 |
-
from transformers import pipeline
|
14 |
import gradio as gr
|
|
|
15 |
|
16 |
-
|
17 |
-
nlp = pipeline('question-answering', model='deepset/roberta-base-squad2', tokenizer='deepset/roberta-base-squad2')
|
18 |
-
#nlp = pipeline('question-answering', model='bert-large-uncased-whole-word-masking-finetuned-squad ', tokenizer='bert-large-uncased-whole-word-masking-finetuned-squad ')
|
19 |
-
#nlp = pipeline("question-answering", model='distilbert-base-cased-distilled-squad')
|
20 |
-
#nlp = pipeline("question-answering", model='distilbert-base-uncased-distilled-squad')
|
21 |
|
22 |
def question_answer(context_filename, question):
|
23 |
"""Produce a NLP response based on the input text filename and question."""
|
24 |
with open(context_filename) as f:
|
25 |
context = f.read()
|
26 |
-
|
27 |
-
|
28 |
return result['answer']
|
29 |
|
30 |
demo = gr.Interface(
|
|
|
1 |
+
# Benchmarks: NT, Why is blood important?
|
2 |
+
#model_name = "deepset/roberta-base-squad2" # 180
|
3 |
+
#model_name = "deepset/deberta-v3-large-squad2" # est. 4X
|
4 |
+
model_name = "deepset/tinyroberta-squad2" # 86
|
5 |
+
#model_name = "deepset/minilm-uncased-squad2" # 96
|
6 |
+
#model_name = "deepset/electra-base-squad2" # 185 (nice wordy results)
|
7 |
|
8 |
|
9 |
# Install Dependences
|
|
|
12 |
# !pip install ipywidgets
|
13 |
# !pip install gradio # see setup for installing gradio
|
14 |
|
|
|
|
|
15 |
import gradio as gr
|
16 |
+
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
17 |
|
18 |
+
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
|
|
|
|
|
|
|
|
|
19 |
|
20 |
def question_answer(context_filename, question):
|
21 |
"""Produce a NLP response based on the input text filename and question."""
|
22 |
with open(context_filename) as f:
|
23 |
context = f.read()
|
24 |
+
nlp_input = {'question': question, 'context': context}
|
25 |
+
result = nlp(nlp_input)
|
26 |
return result['answer']
|
27 |
|
28 |
demo = gr.Interface(
|