|
import os |
|
from pydoc import describe |
|
os.system('pip install torch==1.9 torchvision') |
|
os.system('pip install detectron2==0.5 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html') |
|
os.system('pip install timm opencv-python-headless') |
|
|
|
|
|
import gradio as gr |
|
|
|
from demo.predictor import VisualizationDemo |
|
from detectron2.config import get_cfg |
|
from opendet2 import add_opendet_config |
|
|
|
|
|
model_cfgs = { |
|
"FR-CNN": ["configs/faster_rcnn_R_50_FPN_3x_baseline.yaml", "frcnn_r50.pth"], |
|
"OpenDet-R50": ["configs/faster_rcnn_R_50_FPN_3x_opendet.yaml", "opendet2_r50.pth"], |
|
"OpenDet-SwinT": ["configs/faster_rcnn_Swin_T_FPN_3x_opendet.yaml", "opendet2_swint.pth"], |
|
} |
|
|
|
|
|
def setup_cfg(model): |
|
cfg = get_cfg() |
|
add_opendet_config(cfg) |
|
model_cfg = model_cfgs[model] |
|
cfg.merge_from_file(model_cfg[0]) |
|
cfg.MODEL.WEIGHTS = model_cfg[1] |
|
cfg.MODEL.DEVICE = "cpu" |
|
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 |
|
cfg.MODEL.ROI_HEADS.VIS_IOU_THRESH = 0.8 |
|
cfg.freeze() |
|
return cfg |
|
|
|
|
|
def inference(input, model): |
|
cfg = setup_cfg(model) |
|
demo = VisualizationDemo(cfg) |
|
|
|
predictions, visualized_output = demo.run_on_image(input) |
|
output = visualized_output.get_image()[:, :, ::-1] |
|
return output |
|
|
|
examples = [ |
|
["demo/000000002157.jpg", "OpenDet-R50"], |
|
["demo/000000020059.jpg", "OpenDet-R50"]] |
|
|
|
iface = gr.Interface( |
|
inference, |
|
[ |
|
"image", |
|
gr.inputs.Radio( |
|
["FR-CNN", "OpenDet-R50", "OpenDet-SwinT"], default='OpenDet-R50'), |
|
], |
|
"image", |
|
examples=examples, |
|
title="OpenDet", |
|
article="<p style='text-align: center'><a href='https://github.com/csuhan/opendet2' target='_blank'>Github Repo</a> | <a href='https://csuhan.com' target='_blank'>Author Page</a></p>", |
|
description="Online demo for: Expanding Low-Density Latent Regions for Open-Set Object Detection. Please upload your image, or click one of the examples to load them", |
|
) |
|
|
|
iface.launch(enable_queue=True, cache_examples=True) |
|
|