writerUI / app.py
ctn8176's picture
Update app.py
0f3f1e9 verified
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
import requests
model_name = "Writer/palmyra-small"
tokenizer = AutoTokenizer.from_pretrained(model_name)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
def get_movie_info(movie_title):
api_key = "20e959f0f28e6b3e3de49c50f358538a"
search_url = f"https://api.themoviedb.org/3/search/movie"
# Make a search query to TMDb
params = {
"api_key": api_key,
"query": movie_title,
"language": "en-US",
"page": 1,
}
try:
search_response = requests.get(search_url, params=params)
search_data = search_response.json()
# Check if any results are found
if search_data.get("results"):
movie_id = search_data["results"][0]["id"]
# Fetch detailed information using the movie ID
details_url = f"https://api.themoviedb.org/3/movie/{movie_id}"
details_params = {
"api_key": api_key,
"language": "en-US",
}
details_response = requests.get(details_url, params=details_params)
details_data = details_response.json()
# Extract relevant information
title = details_data.get("title", "Unknown Title")
year = details_data.get("release_date", "Unknown Year")[:4]
genre = ", ".join(genre["name"] for genre in details_data.get("genres", []))
tmdb_link = f"https://www.themoviedb.org/movie/{movie_id}"
return f"Title: {title}, Year: {year}, Genre: {genre}\nFind more info here: {tmdb_link}"
else:
return "Movie not found", ""
except Exception as e:
return f"Error: {e}", ""
def generate_response(prompt):
input_text_template = (
"Hi! I am a gen AI bot powered by the Writer/palmyra-small model. "
"I am here to give helpful, detailed, and polite answers to your movie inquiries.\n \n"
f"USER: {prompt}\n \n"
"Writer AI:"
)
# Call the get_movie_info function to enrich the response
movie_info = get_movie_info(prompt)
# Concatenate the movie info with the input template
input_text_template += f" Movie Info: {movie_info}"
model_inputs = tokenizer(input_text_template, return_tensors="pt").to(device)
gen_conf = {
"top_k": 20,
"max_length": 20, # shortened to limit writer predictions; model loops and and prediction not coherent
"temperature": 0.6,
"do_sample": True,
"eos_token_id": tokenizer.eos_token_id,
}
output = model.generate(**model_inputs, **gen_conf)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
return f"Movie Info:\n{movie_info}\n\n Writer AI Generated Response:\n{generated_text}\n"
# Define chat function for gr.ChatInterface
def chat_function(message, history):
response = generate_response(message)
history.append([message, response])
return response
# Create Gradio Chat Interface
chat_interface = gr.ChatInterface(
chat_function,
textbox=gr.Textbox(placeholder="Type in any movie title, e.g., Oppenheimer, Barbie, Poor Things ", container=False, scale=7),
title="Palmyra-Small - Movie Chatbot ",
description="This chatbot is powered by the Writer/Palmyra-small model and TMdb API. Type in any movie title and the chatbot will respond with the title, release date, genre, and link for more information. ",
theme="soft",
examples=["Oppenheimer", "Barbie", "Poor Things"],)
chat_interface.launch(share=True)