Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import torch
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import gradio as gr
|
4 |
-
|
5 |
|
6 |
model_name = "Writer/palmyra-small"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
@@ -9,18 +9,47 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
9 |
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
|
10 |
|
11 |
def get_movie_info(movie_title):
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
def generate_response(prompt):
|
26 |
input_text_template = (
|
@@ -30,7 +59,7 @@ def generate_response(prompt):
|
|
30 |
"ASSISTANT:"
|
31 |
)
|
32 |
|
33 |
-
# Call the get_movie_info function
|
34 |
movie_info = get_movie_info(prompt)
|
35 |
|
36 |
# Concatenate the movie info with the input template
|
@@ -51,7 +80,6 @@ def generate_response(prompt):
|
|
51 |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
52 |
return generated_text
|
53 |
|
|
|
54 |
iface = gr.Interface(fn=generate_response, inputs="text", outputs="text", live=True)
|
55 |
iface.launch()
|
56 |
-
|
57 |
-
|
|
|
1 |
import torch
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import gradio as gr
|
4 |
+
import requests
|
5 |
|
6 |
model_name = "Writer/palmyra-small"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
9 |
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
|
10 |
|
11 |
def get_movie_info(movie_title):
|
12 |
+
api_key = "20e959f0f28e6b3e3de49c50f358538a"
|
13 |
+
search_url = f"https://api.themoviedb.org/3/search/movie"
|
14 |
+
|
15 |
+
# Make a search query to TMDb
|
16 |
+
params = {
|
17 |
+
"api_key": api_key,
|
18 |
+
"query": movie_title,
|
19 |
+
"language": "en-US",
|
20 |
+
"page": 1,
|
21 |
+
}
|
22 |
+
|
23 |
+
try:
|
24 |
+
search_response = requests.get(search_url, params=params)
|
25 |
+
search_data = search_response.json()
|
26 |
+
|
27 |
+
# Check if any results are found
|
28 |
+
if search_data.get("results"):
|
29 |
+
movie_id = search_data["results"][0]["id"]
|
30 |
+
|
31 |
+
# Fetch detailed information using the movie ID
|
32 |
+
details_url = f"https://api.themoviedb.org/3/movie/{movie_id}"
|
33 |
+
details_params = {
|
34 |
+
"api_key": api_key,
|
35 |
+
"language": "en-US",
|
36 |
+
}
|
37 |
|
38 |
+
details_response = requests.get(details_url, params=details_params)
|
39 |
+
details_data = details_response.json()
|
40 |
|
41 |
+
# Extract relevant information
|
42 |
+
title = details_data.get("title", "Unknown Title")
|
43 |
+
year = details_data.get("release_date", "Unknown Year")[:4]
|
44 |
+
genre = ", ".join(genre["name"] for genre in details_data.get("genres", []))
|
45 |
+
|
46 |
+
return f"Title: {title}, Year: {year}, Genre: {genre}"
|
47 |
+
|
48 |
+
else:
|
49 |
+
return "Movie not found"
|
50 |
+
|
51 |
+
except Exception as e:
|
52 |
+
return f"Error: {e}"
|
53 |
|
54 |
def generate_response(prompt):
|
55 |
input_text_template = (
|
|
|
59 |
"ASSISTANT:"
|
60 |
)
|
61 |
|
62 |
+
# Call the get_movie_info function to enrich the response
|
63 |
movie_info = get_movie_info(prompt)
|
64 |
|
65 |
# Concatenate the movie info with the input template
|
|
|
80 |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
81 |
return generated_text
|
82 |
|
83 |
+
# Create Gradio Interface
|
84 |
iface = gr.Interface(fn=generate_response, inputs="text", outputs="text", live=True)
|
85 |
iface.launch()
|
|
|
|