Spaces:
Runtime error
Runtime error
File size: 6,492 Bytes
acb3eab 8760721 acb3eab f17c02a 4ddb621 f17c02a acb3eab 4ddb621 acb3eab 4ddb621 acb3eab 8760721 acb3eab 4ddb621 acb3eab f17c02a 8760721 b267f43 acb3eab f17c02a 8760721 f17c02a 8760721 f17c02a acb3eab f17c02a 064ed26 8d4a5a4 f17c02a 6ecbb25 8760721 6ecbb25 4ddb621 f17c02a 4ddb621 f17c02a 4ddb621 ce58c9d 4ddb621 6ecbb25 f17c02a 4ddb621 acb3eab f17c02a 4ddb621 acb3eab f17c02a acb3eab 4ddb621 acb3eab 4ddb621 f17c02a 4ddb621 acb3eab 064ed26 acb3eab 4ddb621 acb3eab 4ddb621 1014097 4ddb621 064ed26 4ddb621 6ecbb25 4ddb621 6ecbb25 4ddb621 064ed26 4ddb621 f17c02a 4ddb621 acb3eab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import os
import urllib
from functools import lru_cache
from random import randint
from typing import Any, Callable, Dict, List, Tuple
import clip
import cv2
import gradio as gr
import numpy as np
import PIL
import torch
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
CHECKPOINT_PATH = os.path.join(os.path.expanduser("~"), ".cache", "SAM")
CHECKPOINT_NAME = "sam_vit_h_4b8939.pth"
CHECKPOINT_URL = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth"
MODEL_TYPE = "default"
MAX_WIDTH = MAX_HEIGHT = 800
THRESHOLD = 0.05
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
@lru_cache
def load_mask_generator() -> SamAutomaticMaskGenerator:
if not os.path.exists(CHECKPOINT_PATH):
os.makedirs(CHECKPOINT_PATH)
checkpoint = os.path.join(CHECKPOINT_PATH, CHECKPOINT_NAME)
if not os.path.exists(checkpoint):
urllib.request.urlretrieve(CHECKPOINT_URL, checkpoint)
sam = sam_model_registry[MODEL_TYPE](checkpoint=checkpoint).to(device)
mask_generator = SamAutomaticMaskGenerator(sam)
return mask_generator
@lru_cache
def load_clip(
name: str = "ViT-B/32",
) -> Tuple[torch.nn.Module, Callable[[PIL.Image.Image], torch.Tensor]]:
model, preprocess = clip.load(name, device=device)
return model.to(device), preprocess
def adjust_image_size(image: np.ndarray) -> np.ndarray:
height, width = image.shape[:2]
if height > width:
if height > MAX_HEIGHT:
height, width = MAX_HEIGHT, int(MAX_HEIGHT / height * width)
else:
if width > MAX_WIDTH:
height, width = int(MAX_WIDTH / width * height), MAX_WIDTH
image = cv2.resize(image, (width, height))
return image
@torch.no_grad()
def get_scores(crops: List[PIL.Image.Image], query: str) -> torch.Tensor:
model, preprocess = load_clip()
preprocessed = [preprocess(crop) for crop in crops]
preprocessed = torch.stack(preprocessed).to(device)
token = clip.tokenize(query).to(device)
img_features = model.encode_image(preprocessed)
txt_features = model.encode_text(token)
img_features /= img_features.norm(dim=-1, keepdim=True)
txt_features /= txt_features.norm(dim=-1, keepdim=True)
similarity = (100 * img_features @ txt_features.T).softmax(0)
return similarity
def crop_image(image: np.ndarray, mask: Dict[str, Any]) -> PIL.Image.Image:
x, y, w, h = mask["bbox"]
masked = image * np.expand_dims(mask["segmentation"], -1)
crop = masked[y: y + h, x: x + w]
if h > w:
top, bottom, left, right = 0, 0, (h - w) // 2, (h - w) // 2
else:
top, bottom, left, right = (w - h) // 2, (w - h) // 2, 0, 0
# padding
crop = cv2.copyMakeBorder(
crop,
top,
bottom,
left,
right,
cv2.BORDER_CONSTANT,
value=(0, 0, 0),
)
crop = cv2.cvtColor(crop, cv2.COLOR_BGR2RGB)
crop = PIL.Image.fromarray(crop)
return crop
def filter_masks(
image: np.ndarray,
masks: List[Dict[str, Any]],
predicted_iou_threshold: float,
stability_score_threshold: float,
query: str,
clip_threshold: float,
) -> List[Dict[str, Any]]:
cropped_masks: List[PIL.Image.Image] = []
filtered_masks: List[Dict[str, Any]] = []
for mask in masks:
if (
mask["predicted_iou"] < predicted_iou_threshold
or mask["stability_score"] < stability_score_threshold
or image.shape[:2] != mask["segmentation"].shape[:2]
):
continue
filtered_masks.append(mask)
cropped_masks.append(crop_image(image, mask))
if query and filtered_masks:
scores = get_scores(cropped_masks, query)
filtered_masks = [
filtered_masks[i]
for i, score in enumerate(scores)
if score > clip_threshold
]
return filtered_masks
def draw_masks(
image: np.ndarray, masks: List[np.ndarray], alpha: float = 0.7
) -> np.ndarray:
for mask in masks:
color = [randint(127, 255) for _ in range(3)]
# draw mask overlay
colored_mask = np.expand_dims(mask["segmentation"], 0).repeat(3, axis=0)
colored_mask = np.moveaxis(colored_mask, 0, -1)
masked = np.ma.MaskedArray(image, mask=colored_mask, fill_value=color)
image_overlay = masked.filled()
image = cv2.addWeighted(image, 1 - alpha, image_overlay, alpha, 0)
# draw contour
contours, _ = cv2.findContours(
np.uint8(mask["segmentation"]), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
cv2.drawContours(image, contours, -1, (255, 0, 0), 2)
return image
def segment(
predicted_iou_threshold: float,
stability_score_threshold: float,
clip_threshold: float,
image_path: str,
query: str,
) -> PIL.ImageFile.ImageFile:
mask_generator = load_mask_generator()
# reduce the size to save gpu memory
image = adjust_image_size(cv2.imread(image_path))
masks = mask_generator.generate(image)
masks = filter_masks(
image,
masks,
predicted_iou_threshold,
stability_score_threshold,
query,
clip_threshold,
)
image = draw_masks(image, masks)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = PIL.Image.fromarray(image)
return image
demo = gr.Interface(
fn=segment,
inputs=[
gr.Slider(0, 1, value=0.9, label="predicted_iou_threshold"),
gr.Slider(0, 1, value=0.8, label="stability_score_threshold"),
gr.Slider(0, 1, value=0.05, label="clip_threshold"),
gr.Image(type="filepath"),
"text",
],
outputs="image",
allow_flagging="never",
title="Segment Anything with CLIP",
examples=[
[
0.9,
0.8,
0.15,
os.path.join(os.path.dirname(__file__), "examples/dog.jpg"),
"A dog",
],
[
0.9,
0.8,
0.001,
os.path.join(os.path.dirname(__file__), "examples/city.jpg"),
"building",
],
[
0.9,
0.8,
0.05,
os.path.join(os.path.dirname(__file__), "examples/food.jpg"),
"spoon",
],
[
0.9,
0.8,
0.05,
os.path.join(os.path.dirname(__file__), "examples/horse.jpg"),
"horse",
],
],
)
if __name__ == "__main__":
demo.launch()
|