cxeep commited on
Commit
f5df267
1 Parent(s): 6e05d66

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -0
app.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import cv2
3
+ import numpy as np
4
+ from PIL import Image
5
+ from cvu.detector.yolov5 import Yolov5 as Yolov5Onnx
6
+
7
+ # Load the model outside of the function so it's not reloaded every time the function is called
8
+ model = Yolov5Onnx(classes="coco", backend="onnx", weight='./jtbz_opt.onnx', device='cpu')
9
+
10
+ def detect_objects(image: np.ndarray):
11
+ # Convert the input image to OpenCV format
12
+ image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
13
+
14
+ # Perform the object detection
15
+ preds = model(image)
16
+
17
+ # Draw the predictions on the image
18
+ preds.draw(image)
19
+
20
+ # Convert the image back to PIL format and return it
21
+ return Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
22
+
23
+ # Define the Gradio interface
24
+ iface = gr.Interface(fn=detect_objects,
25
+ inputs=gr.inputs.Image(shape=(416, 416)),
26
+ outputs="image",
27
+ title="YOLOv5 Object Detection",
28
+ description="This is an interactive demo for YOLOv5 object detection. Upload an image to see the detected objects.")
29
+
30
+ iface.launch()