Spaces:
Build error
Build error
File size: 28,670 Bytes
dc1ad90 244d4ad dc1ad90 244d4ad dc1ad90 244d4ad dc1ad90 244d4ad dc1ad90 2311211 dc1ad90 244d4ad 0202baa dc1ad90 244d4ad 33fb086 244d4ad dc1ad90 244d4ad dc1ad90 244d4ad dc1ad90 d81cc17 b19c556 dc1ad90 b19c556 dc1ad90 244d4ad dc1ad90 244d4ad dc1ad90 244d4ad dc1ad90 244d4ad dc1ad90 244d4ad dc1ad90 338e33b dc1ad90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 |
'''
conda activate zero123
cd zero123
python gradio_new.py 0
'''
import diffusers # 0.12.1
import math
import fire
import gradio as gr
import lovely_numpy
import lovely_tensors
import numpy as np
import os
import plotly.express as px
import plotly.graph_objects as go
import rich
import sys
import time
import torch
from contextlib import nullcontext
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
from einops import rearrange
from functools import partial
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.util import create_carvekit_interface, load_and_preprocess, instantiate_from_config
from lovely_numpy import lo
from omegaconf import OmegaConf
from PIL import Image
from rich import print
from transformers import AutoFeatureExtractor
from torch import autocast
from torchvision import transforms
_SHOW_DESC = True
_SHOW_INTERMEDIATE = False
# _SHOW_INTERMEDIATE = True
_GPU_INDEX = 0
# _GPU_INDEX = 2
# _TITLE = 'Zero-Shot Control of Camera Viewpoints within a Single Image'
_TITLE = 'Zero-1-to-3: Zero-shot One Image to 3D Object'
# This demo allows you to generate novel viewpoints of an object depicted in an input image using a fine-tuned version of Stable Diffusion.
_DESCRIPTION = '''
This live demo allows you to control camera rotation and thereby generate novel viewpoints of an object within a single image.
It is based on Stable Diffusion. Check out our [project webpage](https://zero123.cs.columbia.edu/) and [paper](https://arxiv.org/pdf/2303.11328.pdf) if you want to learn more about the method!
Note that this model is not intended for images of humans or faces, and is unlikely to work well for them.
'''
_ARTICLE = 'See uses.md'
def load_model_from_config(config, ckpt, device, verbose=False):
print(f'Loading model from {ckpt}')
pl_sd = torch.load(ckpt, map_location='cpu')
if 'global_step' in pl_sd:
print(f'Global Step: {pl_sd["global_step"]}')
sd = pl_sd['state_dict']
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print('missing keys:')
print(m)
if len(u) > 0 and verbose:
print('unexpected keys:')
print(u)
model.to(device)
model.eval()
return model
@torch.no_grad()
def sample_model(input_im, model, sampler, precision, h, w, ddim_steps, n_samples, scale,
ddim_eta, x, y, z):
precision_scope = autocast if precision == 'autocast' else nullcontext
with precision_scope('cuda'):
with model.ema_scope():
c = model.get_learned_conditioning(input_im).tile(n_samples, 1, 1)
T = torch.tensor([math.radians(x), math.sin(
math.radians(y)), math.cos(math.radians(y)), z])
T = T[None, None, :].repeat(n_samples, 1, 1).to(c.device)
c = torch.cat([c, T], dim=-1)
c = model.cc_projection(c)
cond = {}
cond['c_crossattn'] = [c]
c_concat = model.encode_first_stage((input_im.to(c.device))).mode().detach()
cond['c_concat'] = [model.encode_first_stage((input_im.to(c.device))).mode().detach()
.repeat(n_samples, 1, 1, 1)]
if scale != 1.0:
uc = {}
uc['c_concat'] = [torch.zeros(n_samples, 4, h // 8, w // 8).to(c.device)]
uc['c_crossattn'] = [torch.zeros_like(c).to(c.device)]
else:
uc = None
shape = [4, h // 8, w // 8]
samples_ddim, _ = sampler.sample(S=ddim_steps,
conditioning=cond,
batch_size=n_samples,
shape=shape,
verbose=False,
unconditional_guidance_scale=scale,
unconditional_conditioning=uc,
eta=ddim_eta,
x_T=None)
print(samples_ddim.shape)
# samples_ddim = torch.nn.functional.interpolate(samples_ddim, 64, mode='nearest', antialias=False)
x_samples_ddim = model.decode_first_stage(samples_ddim)
return torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0).cpu()
class CameraVisualizer:
def __init__(self, gradio_plot):
self._gradio_plot = gradio_plot
self._fig = None
self._polar = 0.0
self._azimuth = 0.0
self._radius = 0.0
self._raw_image = None
self._8bit_image = None
self._image_colorscale = None
def polar_change(self, value):
self._polar = value
# return self.update_figure()
def azimuth_change(self, value):
self._azimuth = value
# return self.update_figure()
def radius_change(self, value):
self._radius = value
# return self.update_figure()
def encode_image(self, raw_image):
'''
:param raw_image (H, W, 3) array of uint8 in [0, 255].
'''
# https://stackoverflow.com/questions/60685749/python-plotly-how-to-add-an-image-to-a-3d-scatter-plot
dum_img = Image.fromarray(np.ones((3, 3, 3), dtype='uint8')).convert('P', palette='WEB')
idx_to_color = np.array(dum_img.getpalette()).reshape((-1, 3))
self._raw_image = raw_image
self._8bit_image = Image.fromarray(raw_image).convert('P', palette='WEB', dither=None)
# self._8bit_image = Image.fromarray(raw_image.clip(0, 254)).convert(
# 'P', palette='WEB', dither=None)
self._image_colorscale = [
[i / 255.0, 'rgb({}, {}, {})'.format(*rgb)] for i, rgb in enumerate(idx_to_color)]
# return self.update_figure()
def update_figure(self):
fig = go.Figure()
if self._raw_image is not None:
(H, W, C) = self._raw_image.shape
x = np.zeros((H, W))
(y, z) = np.meshgrid(np.linspace(-1.0, 1.0, W), np.linspace(1.0, -1.0, H) * H / W)
print('x:', lo(x))
print('y:', lo(y))
print('z:', lo(z))
fig.add_trace(go.Surface(
x=x, y=y, z=z,
surfacecolor=self._8bit_image,
cmin=0,
cmax=255,
colorscale=self._image_colorscale,
showscale=False,
lighting_diffuse=1.0,
lighting_ambient=1.0,
lighting_fresnel=1.0,
lighting_roughness=1.0,
lighting_specular=0.3))
scene_bounds = 3.5
base_radius = 2.5
zoom_scale = 1.5 # Note that input radius offset is in [-0.5, 0.5].
fov_deg = 50.0
edges = [(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (2, 3), (3, 4), (4, 1)]
input_cone = calc_cam_cone_pts_3d(
0.0, 0.0, base_radius, fov_deg) # (5, 3).
output_cone = calc_cam_cone_pts_3d(
self._polar, self._azimuth, base_radius + self._radius * zoom_scale, fov_deg) # (5, 3).
# print('input_cone:', lo(input_cone).v)
# print('output_cone:', lo(output_cone).v)
for (cone, clr, legend) in [(input_cone, 'green', 'Input view'),
(output_cone, 'blue', 'Target view')]:
for (i, edge) in enumerate(edges):
(x1, x2) = (cone[edge[0], 0], cone[edge[1], 0])
(y1, y2) = (cone[edge[0], 1], cone[edge[1], 1])
(z1, z2) = (cone[edge[0], 2], cone[edge[1], 2])
fig.add_trace(go.Scatter3d(
x=[x1, x2], y=[y1, y2], z=[z1, z2], mode='lines',
line=dict(color=clr, width=3),
name=legend, showlegend=(i == 0)))
# text=(legend if i == 0 else None),
# textposition='bottom center'))
# hoverinfo='text',
# hovertext='hovertext'))
# Add label.
if cone[0, 2] <= base_radius / 2.0:
fig.add_trace(go.Scatter3d(
x=[cone[0, 0]], y=[cone[0, 1]], z=[cone[0, 2] - 0.05], showlegend=False,
mode='text', text=legend, textposition='bottom center'))
else:
fig.add_trace(go.Scatter3d(
x=[cone[0, 0]], y=[cone[0, 1]], z=[cone[0, 2] + 0.05], showlegend=False,
mode='text', text=legend, textposition='top center'))
# look at center of scene
fig.update_layout(
# width=640,
# height=480,
# height=400,
height=360,
autosize=True,
hovermode=False,
margin=go.layout.Margin(l=0, r=0, b=0, t=0),
showlegend=True,
legend=dict(
yanchor='bottom',
y=0.01,
xanchor='right',
x=0.99,
),
scene=dict(
aspectmode='manual',
aspectratio=dict(x=1, y=1, z=1.0),
camera=dict(
eye=dict(x=base_radius - 1.6, y=0.0, z=0.6),
center=dict(x=0.0, y=0.0, z=0.0),
up=dict(x=0.0, y=0.0, z=1.0)),
xaxis_title='',
yaxis_title='',
zaxis_title='',
xaxis=dict(
range=[-scene_bounds, scene_bounds],
showticklabels=False,
showgrid=True,
zeroline=False,
showbackground=True,
showspikes=False,
showline=False,
ticks=''),
yaxis=dict(
range=[-scene_bounds, scene_bounds],
showticklabels=False,
showgrid=True,
zeroline=False,
showbackground=True,
showspikes=False,
showline=False,
ticks=''),
zaxis=dict(
range=[-scene_bounds, scene_bounds],
showticklabels=False,
showgrid=True,
zeroline=False,
showbackground=True,
showspikes=False,
showline=False,
ticks='')))
self._fig = fig
return fig
def preprocess_image(models, input_im, preprocess):
'''
:param input_im (PIL Image).
:return input_im (H, W, 3) array in [0, 1].
'''
print('old input_im:', input_im.size)
start_time = time.time()
if preprocess:
input_im = load_and_preprocess(models['carvekit'], input_im)
input_im = (input_im / 255.0).astype(np.float32)
# (H, W, 3) array in [0, 1].
else:
input_im = input_im.resize([256, 256], Image.Resampling.LANCZOS)
input_im = np.asarray(input_im, dtype=np.float32) / 255.0
# (H, W, 4) array in [0, 1].
# old method: thresholding background, very important
# input_im[input_im[:, :, -1] <= 0.9] = [1., 1., 1., 1.]
# new method: apply correct method of compositing to avoid sudden transitions / thresholding
# (smoothly transition foreground to white background based on alpha values)
alpha = input_im[:, :, 3:4]
white_im = np.ones_like(input_im)
input_im = alpha * input_im + (1.0 - alpha) * white_im
input_im = input_im[:, :, 0:3]
# (H, W, 3) array in [0, 1].
print(f'Infer foreground mask (preprocess_image) took {time.time() - start_time:.3f}s.')
print('new input_im:', lo(input_im))
return input_im
def main_run(models, device, cam_vis, return_what,
x=0.0, y=0.0, z=0.0,
raw_im=None, preprocess=True,
scale=3.0, n_samples=4, ddim_steps=50, ddim_eta=1.0,
precision='fp32', h=256, w=256):
'''
:param raw_im (PIL Image).
'''
raw_im.thumbnail([1536, 1536], Image.Resampling.LANCZOS)
safety_checker_input = models['clip_fe'](raw_im, return_tensors='pt').to(device)
(image, has_nsfw_concept) = models['nsfw'](
images=np.ones((1, 3)), clip_input=safety_checker_input.pixel_values)
print('has_nsfw_concept:', has_nsfw_concept)
if np.any(has_nsfw_concept):
print('NSFW content detected.')
to_return = [None] * 10
description = ('### <span style="color:red"> Unfortunately, '
'potential NSFW content was detected, '
'which is not supported by our model. '
'Please try again with a different image. </span>')
if 'angles' in return_what:
to_return[0] = 0.0
to_return[1] = 0.0
to_return[2] = 0.0
to_return[3] = description
else:
to_return[0] = description
return to_return
else:
print('Safety check passed.')
input_im = preprocess_image(models, raw_im, preprocess)
# if np.random.rand() < 0.3:
# description = ('Unfortunately, a human, a face, or potential NSFW content was detected, '
# 'which is not supported by our model.')
# if vis_only:
# return (None, None, description)
# else:
# return (None, None, None, description)
show_in_im1 = (input_im * 255.0).astype(np.uint8)
show_in_im2 = Image.fromarray(show_in_im1)
if 'rand' in return_what:
x = int(np.round(np.arcsin(np.random.uniform(-1.0, 1.0)) * 160.0 / np.pi)) # [-80, 80].
y = int(np.round(np.random.uniform(-150.0, 150.0)))
z = 0.0
cam_vis.polar_change(x)
cam_vis.azimuth_change(y)
cam_vis.radius_change(z)
cam_vis.encode_image(show_in_im1)
new_fig = cam_vis.update_figure()
if 'vis' in return_what:
description = ('The viewpoints are visualized on the top right. '
'Click Run Generation to update the results on the bottom right.')
if 'angles' in return_what:
return (x, y, z, description, new_fig, show_in_im2)
else:
return (description, new_fig, show_in_im2)
elif 'gen' in return_what:
input_im = transforms.ToTensor()(input_im).unsqueeze(0).to(device)
input_im = input_im * 2 - 1
input_im = transforms.functional.resize(input_im, [h, w])
sampler = DDIMSampler(models['turncam'])
# used_x = -x # NOTE: Polar makes more sense in Basile's opinion this way!
used_x = x # NOTE: Set this way for consistency.
x_samples_ddim = sample_model(input_im, models['turncam'], sampler, precision, h, w,
ddim_steps, n_samples, scale, ddim_eta, used_x, y, z)
output_ims = []
for x_sample in x_samples_ddim:
x_sample = 255.0 * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
output_ims.append(Image.fromarray(x_sample.astype(np.uint8)))
description = None
if 'angles' in return_what:
return (x, y, z, description, new_fig, show_in_im2, output_ims)
else:
return (description, new_fig, show_in_im2, output_ims)
def calc_cam_cone_pts_3d(polar_deg, azimuth_deg, radius_m, fov_deg):
'''
:param polar_deg (float).
:param azimuth_deg (float).
:param radius_m (float).
:param fov_deg (float).
:return (5, 3) array of float with (x, y, z).
'''
polar_rad = np.deg2rad(polar_deg)
azimuth_rad = np.deg2rad(azimuth_deg)
fov_rad = np.deg2rad(fov_deg)
polar_rad = -polar_rad # NOTE: Inverse of how used_x relates to x.
# Camera pose center:
cam_x = radius_m * np.cos(azimuth_rad) * np.cos(polar_rad)
cam_y = radius_m * np.sin(azimuth_rad) * np.cos(polar_rad)
cam_z = radius_m * np.sin(polar_rad)
# Obtain four corners of camera frustum, assuming it is looking at origin.
# First, obtain camera extrinsics (rotation matrix only):
camera_R = np.array([[np.cos(azimuth_rad) * np.cos(polar_rad),
-np.sin(azimuth_rad),
-np.cos(azimuth_rad) * np.sin(polar_rad)],
[np.sin(azimuth_rad) * np.cos(polar_rad),
np.cos(azimuth_rad),
-np.sin(azimuth_rad) * np.sin(polar_rad)],
[np.sin(polar_rad),
0.0,
np.cos(polar_rad)]])
# print('camera_R:', lo(camera_R).v)
# Multiply by corners in camera space to obtain go to space:
corn1 = [-1.0, np.tan(fov_rad / 2.0), np.tan(fov_rad / 2.0)]
corn2 = [-1.0, -np.tan(fov_rad / 2.0), np.tan(fov_rad / 2.0)]
corn3 = [-1.0, -np.tan(fov_rad / 2.0), -np.tan(fov_rad / 2.0)]
corn4 = [-1.0, np.tan(fov_rad / 2.0), -np.tan(fov_rad / 2.0)]
corn1 = np.dot(camera_R, corn1)
corn2 = np.dot(camera_R, corn2)
corn3 = np.dot(camera_R, corn3)
corn4 = np.dot(camera_R, corn4)
# Now attach as offset to actual 3D camera position:
corn1 = np.array(corn1) / np.linalg.norm(corn1, ord=2)
corn_x1 = cam_x + corn1[0]
corn_y1 = cam_y + corn1[1]
corn_z1 = cam_z + corn1[2]
corn2 = np.array(corn2) / np.linalg.norm(corn2, ord=2)
corn_x2 = cam_x + corn2[0]
corn_y2 = cam_y + corn2[1]
corn_z2 = cam_z + corn2[2]
corn3 = np.array(corn3) / np.linalg.norm(corn3, ord=2)
corn_x3 = cam_x + corn3[0]
corn_y3 = cam_y + corn3[1]
corn_z3 = cam_z + corn3[2]
corn4 = np.array(corn4) / np.linalg.norm(corn4, ord=2)
corn_x4 = cam_x + corn4[0]
corn_y4 = cam_y + corn4[1]
corn_z4 = cam_z + corn4[2]
xs = [cam_x, corn_x1, corn_x2, corn_x3, corn_x4]
ys = [cam_y, corn_y1, corn_y2, corn_y3, corn_y4]
zs = [cam_z, corn_z1, corn_z2, corn_z3, corn_z4]
return np.array([xs, ys, zs]).T
def run_demo(
device_idx=_GPU_INDEX,
ckpt='105000.ckpt',
config='configs/sd-objaverse-finetune-c_concat-256.yaml'):
print('sys.argv:', sys.argv)
if len(sys.argv) > 1:
print('old device_idx:', device_idx)
device_idx = int(sys.argv[1])
print('new device_idx:', device_idx)
device = f'cuda:{device_idx}'
config = OmegaConf.load(config)
# Instantiate all models beforehand for efficiency.
models = dict()
print('Instantiating LatentDiffusion...')
models['turncam'] = load_model_from_config(config, ckpt, device=device)
print('Instantiating Carvekit HiInterface...')
models['carvekit'] = create_carvekit_interface()
print('Instantiating StableDiffusionSafetyChecker...')
models['nsfw'] = StableDiffusionSafetyChecker.from_pretrained(
'CompVis/stable-diffusion-safety-checker').to(device)
print('Instantiating AutoFeatureExtractor...')
models['clip_fe'] = AutoFeatureExtractor.from_pretrained(
'CompVis/stable-diffusion-safety-checker')
# Reduce NSFW false positives.
# NOTE: At the time of writing, and for diffusers 0.12.1, the default parameters are:
# models['nsfw'].concept_embeds_weights:
# [0.1800, 0.1900, 0.2060, 0.2100, 0.1950, 0.1900, 0.1940, 0.1900, 0.1900, 0.2200, 0.1900,
# 0.1900, 0.1950, 0.1984, 0.2100, 0.2140, 0.2000].
# models['nsfw'].special_care_embeds_weights:
# [0.1950, 0.2000, 0.2200].
# We multiply all by some factor > 1 to make them less likely to be triggered.
models['nsfw'].concept_embeds_weights *= 1.07
models['nsfw'].special_care_embeds_weights *= 1.07
with open('instructions.md', 'r') as f:
article = f.read()
# NOTE: Examples must match inputs
# [polar_slider, azimuth_slider, radius_slider, image_block,
# preprocess_chk, scale_slider, samples_slider, steps_slider].
example_fns = ['1_blue_arm.png', '2_cybercar.png', '3_sushi.png', '4_blackarm.png',
'5_cybercar.png', '6_burger.png', '7_london.png', '8_motor.png']
num_examples = len(example_fns)
example_fps = [os.path.join(os.path.dirname(__file__), 'configs', x) for x in example_fns]
example_angles = [(-40.0, -65.0, 0.0), (-30.0, 90.0, 0.0), (45.0, -15.0, 0.0), (-75.0, 100.0, 0.0),
(-40.0, -75.0, 0.0), (-45.0, 0.0, 0.0), (-55.0, 90.0, 0.0), (-20.0, 125.0, 0.0)]
examples_full = [[*example_angles[i], example_fps[i], True, 3, 4, 50] for i in range(num_examples)]
print('examples_full:', examples_full)
# Compose demo layout & data flow.
demo = gr.Blocks(title=_TITLE)
with demo:
gr.Markdown('# ' + _TITLE)
gr.Markdown(_DESCRIPTION)
with gr.Row():
with gr.Column(scale=0.9, variant='panel'):
image_block = gr.Image(type='pil', image_mode='RGBA',
label='Input image of single object')
preprocess_chk = gr.Checkbox(
True, label='Preprocess image automatically (remove background and recenter object)')
# info='If enabled, the uploaded image will be preprocessed to remove the background and recenter the object by cropping and/or padding as necessary. '
# 'If disabled, the image will be used as-is, *BUT* a fully transparent or white background is required.'),
gr.Markdown('*Try camera position presets:*')
with gr.Row():
left_btn = gr.Button('View from the Left', variant='primary')
above_btn = gr.Button('View from Above', variant='primary')
right_btn = gr.Button('View from the Right', variant='primary')
with gr.Row():
random_btn = gr.Button('Random Rotation', variant='primary')
below_btn = gr.Button('View from Below', variant='primary')
behind_btn = gr.Button('View from Behind', variant='primary')
gr.Markdown('*Control camera position manually:*')
polar_slider = gr.Slider(
-90, 90, value=0, step=5, label='Polar angle (vertical rotation in degrees)')
# info='Positive values move the camera down, while negative values move the camera up.')
azimuth_slider = gr.Slider(
-180, 180, value=0, step=5, label='Azimuth angle (horizontal rotation in degrees)')
# info='Positive values move the camera right, while negative values move the camera left.')
radius_slider = gr.Slider(
-0.5, 0.5, value=0.0, step=0.1, label='Zoom (relative distance from center)')
# info='Positive values move the camera further away, while negative values move the camera closer.')
samples_slider = gr.Slider(1, 8, value=4, step=1,
label='Number of samples to generate')
with gr.Accordion('Advanced options', open=False):
scale_slider = gr.Slider(0, 30, value=3, step=1,
label='Diffusion guidance scale')
steps_slider = gr.Slider(5, 200, value=75, step=5,
label='Number of diffusion inference steps')
with gr.Row():
vis_btn = gr.Button('Visualize Angles', variant='secondary')
run_btn = gr.Button('Run Generation', variant='primary')
desc_output = gr.Markdown(
'The results will appear on the right.', visible=_SHOW_DESC)
with gr.Column(scale=1.1, variant='panel'):
vis_output = gr.Plot(
label='Relationship between input (green) and output (blue) camera poses')
gen_output = gr.Gallery(label='Generated images from specified new viewpoint')
gen_output.style(grid=2)
preproc_output = gr.Image(type='pil', image_mode='RGB',
label='Preprocessed input image', visible=_SHOW_INTERMEDIATE)
cam_vis = CameraVisualizer(vis_output)
gr.Examples(
examples=examples_full, # NOTE: elements must match inputs list!
fn=partial(main_run, models, device, cam_vis, 'gen'),
inputs=[polar_slider, azimuth_slider, radius_slider,
image_block, preprocess_chk,
scale_slider, samples_slider, steps_slider],
outputs=[desc_output, vis_output, preproc_output, gen_output],
cache_examples=True,
run_on_click=True,
)
gr.Markdown(article)
# NOTE: I am forced to update vis_output for these preset buttons,
# because otherwise the gradio plot always resets the plotly 3D viewpoint for some reason,
# which might confuse the user into thinking that the plot has been updated too.
# polar_slider.change(fn=partial(main_run, models, device, cam_vis, 'vis'),
# inputs=[polar_slider, azimuth_slider, radius_slider,
# image_block, preprocess_chk],
# outputs=[desc_output, vis_output, preproc_output],
# queue=False)
# azimuth_slider.change(fn=partial(main_run, models, device, cam_vis, 'vis'),
# inputs=[polar_slider, azimuth_slider, radius_slider,
# image_block, preprocess_chk],
# outputs=[desc_output, vis_output, preproc_output],
# queue=False)
# radius_slider.change(fn=partial(main_run, models, device, cam_vis, 'vis'),
# inputs=[polar_slider, azimuth_slider, radius_slider,
# image_block, preprocess_chk],
# outputs=[desc_output, vis_output, preproc_output],
# queue=False)
vis_btn.click(fn=partial(main_run, models, device, cam_vis, 'vis'),
inputs=[polar_slider, azimuth_slider, radius_slider,
image_block, preprocess_chk],
outputs=[desc_output, vis_output, preproc_output],
queue=False)
run_btn.click(fn=partial(main_run, models, device, cam_vis, 'gen'),
inputs=[polar_slider, azimuth_slider, radius_slider,
image_block, preprocess_chk,
scale_slider, samples_slider, steps_slider],
outputs=[desc_output, vis_output, preproc_output, gen_output])
# NEW:
preset_inputs = [image_block, preprocess_chk,
scale_slider, samples_slider, steps_slider]
preset_outputs = [polar_slider, azimuth_slider, radius_slider,
desc_output, vis_output, preproc_output, gen_output]
left_btn.click(fn=partial(main_run, models, device, cam_vis, 'angles_gen',
0.0, -90.0, 0.0),
inputs=preset_inputs, outputs=preset_outputs)
above_btn.click(fn=partial(main_run, models, device, cam_vis, 'angles_gen',
-90.0, 0.0, 0.0),
inputs=preset_inputs, outputs=preset_outputs)
right_btn.click(fn=partial(main_run, models, device, cam_vis, 'angles_gen',
0.0, 90.0, 0.0),
inputs=preset_inputs, outputs=preset_outputs)
random_btn.click(fn=partial(main_run, models, device, cam_vis, 'rand_angles_gen',
-1.0, -1.0, -1.0),
inputs=preset_inputs, outputs=preset_outputs)
below_btn.click(fn=partial(main_run, models, device, cam_vis, 'angles_gen',
90.0, 0.0, 0.0),
inputs=preset_inputs, outputs=preset_outputs)
behind_btn.click(fn=partial(main_run, models, device, cam_vis, 'angles_gen',
0.0, 180.0, 0.0),
inputs=preset_inputs, outputs=preset_outputs)
demo.launch(enable_queue=True)
if __name__ == '__main__':
fire.Fire(run_demo)
|