Spaces:
Sleeping
Sleeping
File size: 3,429 Bytes
456ed62 a17cbc4 456ed62 4c9245b b725215 4c9245b b725215 4c9245b 456ed62 b725215 456ed62 b725215 a17cbc4 b725215 4c9245b 456ed62 b725215 456ed62 b725215 456ed62 b725215 456ed62 b725215 456ed62 b725215 456ed62 b725215 456ed62 b725215 00aa3d6 a17cbc4 b725215 456ed62 a17cbc4 b725215 456ed62 a17cbc4 456ed62 b725215 456ed62 72ff15a 456ed62 4c9245b 456ed62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
import torch
import torchaudio
from einops import rearrange
import gradio as gr
import spaces
import os
import uuid
# Importing the model-related functions
from stable_audio_tools import get_pretrained_model
from stable_audio_tools.inference.generation import generate_diffusion_cond
# Load the model outside of the GPU-decorated function
def load_model():
print("Loading model...")
model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0")
print("Model loaded successfully.")
return model, model_config
# Function to set up, generate, and process the audio
@spaces.GPU(duration=120) # Allocate GPU only when this function is called
def generate_audio(prompt, seconds_total=30, steps=100, cfg_scale=7):
print(f"Prompt received: {prompt}")
print(f"Settings: Duration={seconds_total}s, Steps={steps}, CFG Scale={cfg_scale}")
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Fetch the Hugging Face token from the environment variable
hf_token = os.getenv('HF_TOKEN')
print(f"Hugging Face token: {hf_token}")
# Use pre-loaded model and configuration
model, model_config = load_model()
sample_rate = model_config["sample_rate"]
sample_size = model_config["sample_size"]
print(f"Sample rate: {sample_rate}, Sample size: {sample_size}")
model = model.to(device)
print("Model moved to device.")
# Set up text and timing conditioning
conditioning = [{
"prompt": prompt,
"seconds_start": 0,
"seconds_total": seconds_total
}]
print(f"Conditioning: {conditioning}")
# Generate stereo audio
print("Generating audio...")
output = generate_diffusion_cond(
model,
steps=steps,
cfg_scale=cfg_scale,
conditioning=conditioning,
sample_size=sample_size,
sigma_min=0.3,
sigma_max=500,
sampler_type="dpmpp-3m-sde",
device=device
)
print("Audio generated.")
# Rearrange audio batch to a single sequence
output = rearrange(output, "b d n -> d (b n)")
print("Audio rearranged.")
# Peak normalize, clip, convert to int16
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
print("Audio normalized and converted.")
# Generate a unique filename for the output
unique_filename = f"output_{uuid.uuid4().hex}.wav"
print(f"Saving audio to file: {unique_filename}")
# Save to file
torchaudio.save(unique_filename, output, sample_rate)
print(f"Audio saved: {unique_filename}")
# Return the path to the generated audio file
return unique_filename
# Setting up the Gradio Interface
interface = gr.Interface(
fn=generate_audio,
inputs=[
gr.Textbox(label="Prompt", placeholder="Enter your text prompt here"),
gr.Slider(0, 47, value=30, label="Duration in Seconds"),
gr.Slider(10, 150, value=100, step=10, label="Number of Diffusion Steps"),
gr.Slider(1, 15, value=7, step=0.1, label="CFG Scale")
],
outputs=gr.Audio(type="filepath", label="Generated Audio"),
title="Pixio Audio",
description="Generate variable-length stereo audio from text prompts using Pixio Audio 1.0 ."
)
# Pre-load the model to avoid multiprocessing issues
model, model_config = load_model()
# Launch the Interface
interface.launch()
|