File size: 5,639 Bytes
60094bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
from typing import Optional

from torch.nn import Sequential, Conv2d, ConvTranspose2d, Module

from tha3.nn.normalization import NormalizationLayerFactory
from tha3.nn.util import BlockArgs, wrap_conv_or_linear_module


def create_separable_conv3(in_channels: int, out_channels: int,
                           bias: bool = False,
                           initialization_method='he',
                           use_spectral_norm: bool = False) -> Module:
    return Sequential(
        wrap_conv_or_linear_module(
            Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1, bias=False, groups=in_channels),
            initialization_method,
            use_spectral_norm),
        wrap_conv_or_linear_module(
            Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=bias),
            initialization_method,
            use_spectral_norm))


def create_separable_conv7(in_channels: int, out_channels: int,
                           bias: bool = False,
                           initialization_method='he',
                           use_spectral_norm: bool = False) -> Module:
    return Sequential(
        wrap_conv_or_linear_module(
            Conv2d(in_channels, in_channels, kernel_size=7, stride=1, padding=3, bias=False, groups=in_channels),
            initialization_method,
            use_spectral_norm),
        wrap_conv_or_linear_module(
            Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=bias),
            initialization_method,
            use_spectral_norm))


def create_separable_conv3_block(
        in_channels: int, out_channels: int, block_args: Optional[BlockArgs] = None):
    if block_args is None:
        block_args = BlockArgs()
    return Sequential(
        wrap_conv_or_linear_module(
            Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1, bias=False, groups=in_channels),
            block_args.initialization_method,
            block_args.use_spectral_norm),
        wrap_conv_or_linear_module(
            Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False),
            block_args.initialization_method,
            block_args.use_spectral_norm),
        NormalizationLayerFactory.resolve_2d(block_args.normalization_layer_factory).create(out_channels, affine=True),
        block_args.nonlinearity_factory.create())


def create_separable_conv7_block(
        in_channels: int, out_channels: int, block_args: Optional[BlockArgs] = None):
    if block_args is None:
        block_args = BlockArgs()
    return Sequential(
        wrap_conv_or_linear_module(
            Conv2d(in_channels, in_channels, kernel_size=7, stride=1, padding=3, bias=False, groups=in_channels),
            block_args.initialization_method,
            block_args.use_spectral_norm),
        wrap_conv_or_linear_module(
            Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False),
            block_args.initialization_method,
            block_args.use_spectral_norm),
        NormalizationLayerFactory.resolve_2d(block_args.normalization_layer_factory).create(out_channels, affine=True),
        block_args.nonlinearity_factory.create())


def create_separable_downsample_block(
        in_channels: int, out_channels: int, is_output_1x1: bool, block_args: Optional[BlockArgs] = None):
    if block_args is None:
        block_args = BlockArgs()
    if is_output_1x1:
        return Sequential(
            wrap_conv_or_linear_module(
                Conv2d(in_channels, in_channels, kernel_size=4, stride=2, padding=1, bias=False, groups=in_channels),
                block_args.initialization_method,
                block_args.use_spectral_norm),
            wrap_conv_or_linear_module(
                Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False),
                block_args.initialization_method,
                block_args.use_spectral_norm),
            block_args.nonlinearity_factory.create())
    else:
        return Sequential(
            wrap_conv_or_linear_module(
                Conv2d(in_channels, in_channels, kernel_size=4, stride=2, padding=1, bias=False, groups=in_channels),
                block_args.initialization_method,
                block_args.use_spectral_norm),
            wrap_conv_or_linear_module(
                Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False),
                block_args.initialization_method,
                block_args.use_spectral_norm),
            NormalizationLayerFactory.resolve_2d(block_args.normalization_layer_factory)
                .create(out_channels, affine=True),
            block_args.nonlinearity_factory.create())


def create_separable_upsample_block(
        in_channels: int, out_channels: int, block_args: Optional[BlockArgs] = None):
    if block_args is None:
        block_args = BlockArgs()
    return Sequential(
        wrap_conv_or_linear_module(
            ConvTranspose2d(
                in_channels, in_channels, kernel_size=4, stride=2, padding=1, bias=False, groups=in_channels),
            block_args.initialization_method,
            block_args.use_spectral_norm),
        wrap_conv_or_linear_module(
            Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False),
            block_args.initialization_method,
            block_args.use_spectral_norm),
        NormalizationLayerFactory.resolve_2d(block_args.normalization_layer_factory)
            .create(out_channels, affine=True),
        block_args.nonlinearity_factory.create())