Spaces:
Runtime error
Runtime error
import math | |
import os | |
from typing import List | |
import PIL.Image | |
import numpy | |
import torch | |
from matplotlib import cm | |
from torch import Tensor | |
def is_power2(x): | |
return x != 0 and ((x & (x - 1)) == 0) | |
def numpy_srgb_to_linear(x): | |
x = numpy.clip(x, 0.0, 1.0) | |
return numpy.where(x <= 0.04045, x / 12.92, ((x + 0.055) / 1.055) ** 2.4) | |
def numpy_linear_to_srgb(x): | |
x = numpy.clip(x, 0.0, 1.0) | |
return numpy.where(x <= 0.003130804953560372, x * 12.92, 1.055 * (x ** (1.0 / 2.4)) - 0.055) | |
def torch_srgb_to_linear(x: torch.Tensor): | |
x = torch.clip(x, 0.0, 1.0) | |
return torch.where(torch.le(x, 0.04045), x / 12.92, ((x + 0.055) / 1.055) ** 2.4) | |
def torch_linear_to_srgb(x): | |
x = torch.clip(x, 0.0, 1.0) | |
return torch.where(torch.le(x, 0.003130804953560372), x * 12.92, 1.055 * (x ** (1.0 / 2.4)) - 0.055) | |
def image_linear_to_srgb(image): | |
assert image.shape[2] == 3 or image.shape[2] == 4 | |
if image.shape[2] == 3: | |
return numpy_linear_to_srgb(image) | |
else: | |
height, width, _ = image.shape | |
rgb_image = numpy_linear_to_srgb(image[:, :, 0:3]) | |
a_image = image[:, :, 3:4] | |
return numpy.concatenate((rgb_image, a_image), axis=2) | |
def image_srgb_to_linear(image): | |
assert image.shape[2] == 3 or image.shape[2] == 4 | |
if image.shape[2] == 3: | |
return numpy_srgb_to_linear(image) | |
else: | |
height, width, _ = image.shape | |
rgb_image = numpy_srgb_to_linear(image[:, :, 0:3]) | |
a_image = image[:, :, 3:4] | |
return numpy.concatenate((rgb_image, a_image), axis=2) | |
def save_rng_state(file_name): | |
rng_state = torch.get_rng_state() | |
torch_save(rng_state, file_name) | |
def load_rng_state(file_name): | |
rng_state = torch_load(file_name) | |
torch.set_rng_state(rng_state) | |
def grid_change_to_numpy_image(torch_image, num_channels=3): | |
height = torch_image.shape[1] | |
width = torch_image.shape[2] | |
size_image = (torch_image[0, :, :] ** 2 + torch_image[1, :, :] ** 2).sqrt().view(height, width, 1).numpy() | |
hsv = cm.get_cmap('hsv') | |
angle_image = hsv(((torch.atan2( | |
torch_image[0, :, :].view(height * width), | |
torch_image[1, :, :].view(height * width)).view(height, width) + math.pi) / (2 * math.pi)).numpy()) * 3 | |
numpy_image = size_image * angle_image[:, :, 0:3] | |
rgb_image = numpy_linear_to_srgb(numpy_image) | |
if num_channels == 3: | |
return rgb_image | |
elif num_channels == 4: | |
return numpy.concatenate([rgb_image, numpy.ones_like(size_image)], axis=2) | |
else: | |
raise RuntimeError("Unsupported num_channels: " + str(num_channels)) | |
def rgb_to_numpy_image(torch_image: Tensor, min_pixel_value=-1.0, max_pixel_value=1.0): | |
assert torch_image.dim() == 3 | |
assert torch_image.shape[0] == 3 | |
height = torch_image.shape[1] | |
width = torch_image.shape[2] | |
reshaped_image = torch_image.numpy().reshape(3, height * width).transpose().reshape(height, width, 3) | |
numpy_image = (reshaped_image - min_pixel_value) / (max_pixel_value - min_pixel_value) | |
return numpy_linear_to_srgb(numpy_image) | |
def rgba_to_numpy_image_greenscreen(torch_image: Tensor, | |
min_pixel_value=-1.0, | |
max_pixel_value=1.0, | |
include_alpha=False): | |
height = torch_image.shape[1] | |
width = torch_image.shape[2] | |
numpy_image = (torch_image.numpy().reshape(4, height * width).transpose().reshape(height, width, | |
4) - min_pixel_value) \ | |
/ (max_pixel_value - min_pixel_value) | |
rgb_image = numpy_linear_to_srgb(numpy_image[:, :, 0:3]) | |
a_image = numpy_image[:, :, 3] | |
rgb_image[:, :, 0:3] = rgb_image[:, :, 0:3] * a_image.reshape(a_image.shape[0], a_image.shape[1], 1) | |
rgb_image[:, :, 1] = rgb_image[:, :, 1] + (1 - a_image) | |
if not include_alpha: | |
return rgb_image | |
else: | |
return numpy.concatenate((rgb_image, numpy.ones_like(numpy_image[:, :, 3:4])), axis=2) | |
def rgba_to_numpy_image(torch_image: Tensor, min_pixel_value=-1.0, max_pixel_value=1.0): | |
assert torch_image.dim() == 3 | |
assert torch_image.shape[0] == 4 | |
height = torch_image.shape[1] | |
width = torch_image.shape[2] | |
reshaped_image = torch_image.numpy().reshape(4, height * width).transpose().reshape(height, width, 4) | |
numpy_image = (reshaped_image - min_pixel_value) / (max_pixel_value - min_pixel_value) | |
rgb_image = numpy_linear_to_srgb(numpy_image[:, :, 0:3]) | |
a_image = numpy.clip(numpy_image[:, :, 3], 0.0, 1.0) | |
rgba_image = numpy.concatenate((rgb_image, a_image.reshape(height, width, 1)), axis=2) | |
return rgba_image | |
def extract_numpy_image_from_filelike_with_pytorch_layout(file, has_alpha=True, scale=2.0, offset=-1.0): | |
try: | |
pil_image = PIL.Image.open(file) | |
except Exception as e: | |
raise RuntimeError(file) | |
return extract_numpy_image_from_PIL_image_with_pytorch_layout(pil_image, has_alpha, scale, offset) | |
def extract_numpy_image_from_PIL_image_with_pytorch_layout(pil_image, has_alpha=True, scale=2.0, offset=-1.0): | |
if has_alpha: | |
num_channel = 4 | |
else: | |
num_channel = 3 | |
image_size = pil_image.width | |
# search for transparent pixels(alpha==0) and change them to [0 0 0 0] to avoid the color influence to the model | |
for i, px in enumerate(pil_image.getdata()): | |
if px[3] <= 0: | |
y = i // image_size | |
x = i % image_size | |
pil_image.putpixel((x, y), (0, 0, 0, 0)) | |
raw_image = numpy.asarray(pil_image) | |
image = (raw_image / 255.0).reshape(image_size, image_size, num_channel) | |
image[:, :, 0:3] = numpy_srgb_to_linear(image[:, :, 0:3]) | |
image = image \ | |
.reshape(image_size * image_size, num_channel) \ | |
.transpose() \ | |
.reshape(num_channel, image_size, image_size) * scale + offset | |
return image | |
def extract_pytorch_image_from_filelike(file, has_alpha=True, scale=2.0, offset=-1.0): | |
try: | |
pil_image = PIL.Image.open(file) | |
except Exception as e: | |
raise RuntimeError(file) | |
image = extract_numpy_image_from_PIL_image_with_pytorch_layout(pil_image, has_alpha, scale, offset) | |
return torch.from_numpy(image).float() | |
def extract_pytorch_image_from_PIL_image(pil_image, has_alpha=True, scale=2.0, offset=-1.0): | |
image = extract_numpy_image_from_PIL_image_with_pytorch_layout(pil_image, has_alpha, scale, offset) | |
return torch.from_numpy(image).float() | |
def extract_numpy_image_from_filelike(file): | |
pil_image = PIL.Image.open(file) | |
image_width = pil_image.width | |
image_height = pil_image.height | |
if pil_image.mode == "RGBA": | |
image = (numpy.asarray(pil_image) / 255.0).reshape(image_height, image_width, 4) | |
else: | |
image = (numpy.asarray(pil_image) / 255.0).reshape(image_height, image_width, 3) | |
image[:, :, 0:3] = numpy_srgb_to_linear(image[:, :, 0:3]) | |
return image | |
def convert_avs_to_avi(avs_file, avi_file): | |
os.makedirs(os.path.dirname(avi_file), exist_ok=True) | |
file = open("temp.vdub", "w") | |
file.write("VirtualDub.Open(\"%s\");" % avs_file) | |
file.write("VirtualDub.video.SetCompression(\"cvid\", 0, 10000, 0);") | |
file.write("VirtualDub.SaveAVI(\"%s\");" % avi_file) | |
file.write("VirtualDub.Close();") | |
file.close() | |
os.system("C:\\ProgramData\\chocolatey\\lib\\virtualdub\\tools\\vdub64.exe /i temp.vdub") | |
os.remove("temp.vdub") | |
def convert_avi_to_mp4(avi_file, mp4_file): | |
os.makedirs(os.path.dirname(mp4_file), exist_ok=True) | |
os.system("ffmpeg -y -i %s -c:v libx264 -preset slow -crf 22 -c:a libfaac -b:a 128k %s" % \ | |
(avi_file, mp4_file)) | |
def convert_avi_to_webm(avi_file, webm_file): | |
os.makedirs(os.path.dirname(webm_file), exist_ok=True) | |
os.system("ffmpeg -y -i %s -vcodec libvpx -qmin 0 -qmax 50 -crf 10 -b:v 1M -acodec libvorbis %s" % \ | |
(avi_file, webm_file)) | |
def convert_mp4_to_webm(mp4_file, webm_file): | |
os.makedirs(os.path.dirname(webm_file), exist_ok=True) | |
os.system("ffmpeg -y -i %s -vcodec libvpx -qmin 0 -qmax 50 -crf 10 -b:v 1M -acodec libvorbis %s" % \ | |
(mp4_file, webm_file)) | |
def create_parent_dir(file_name): | |
os.makedirs(os.path.dirname(file_name), exist_ok=True) | |
def run_command(command_parts: List[str]): | |
command = " ".join(command_parts) | |
os.system(command) | |
def save_pytorch_image(image, file_name): | |
if image.shape[0] == 1: | |
image = image.squeeze() | |
if image.shape[0] == 4: | |
numpy_image = rgba_to_numpy_image(image.detach().cpu()) | |
pil_image = PIL.Image.fromarray(numpy.uint8(numpy.rint(numpy_image * 255.0)), mode='RGBA') | |
else: | |
numpy_image = rgb_to_numpy_image(image.detach().cpu()) | |
pil_image = PIL.Image.fromarray(numpy.uint8(numpy.rint(numpy_image * 255.0)), mode='RGB') | |
os.makedirs(os.path.dirname(file_name), exist_ok=True) | |
pil_image.save(file_name) | |
def torch_load(file_name): | |
with open(file_name, 'rb') as f: | |
return torch.load(f) | |
def torch_save(content, file_name): | |
os.makedirs(os.path.dirname(file_name), exist_ok=True) | |
with open(file_name, 'wb') as f: | |
torch.save(content, f) | |
def resize_PIL_image(pil_image, size=(256, 256)): | |
w, h = pil_image.size | |
d = min(w, h) | |
r = ((w - d) // 2, (h - d) // 2, (w + d) // 2, (h + d) // 2) | |
return pil_image.resize(size, resample=PIL.Image.LANCZOS, box=r) | |
def extract_PIL_image_from_filelike(file): | |
return PIL.Image.open(file) | |
def convert_output_image_from_torch_to_numpy(output_image): | |
if output_image.shape[2] == 2: | |
h, w, c = output_image.shape | |
output_image = torch.transpose(output_image.reshape(h * w, c), 0, 1).reshape(c, h, w) | |
if output_image.shape[0] == 4: | |
numpy_image = rgba_to_numpy_image(output_image) | |
elif output_image.shape[0] == 1: | |
c, h, w = output_image.shape | |
alpha_image = torch.cat([output_image.repeat(3, 1, 1) * 2.0 - 1.0, torch.ones(1, h, w)], dim=0) | |
numpy_image = rgba_to_numpy_image(alpha_image) | |
elif output_image.shape[0] == 2: | |
numpy_image = grid_change_to_numpy_image(output_image, num_channels=4) | |
else: | |
raise RuntimeError("Unsupported # image channels: %d" % output_image.shape[0]) | |
return numpy_image | |