import math import os from typing import List import PIL.Image import numpy import torch from matplotlib import cm from torch import Tensor def is_power2(x): return x != 0 and ((x & (x - 1)) == 0) def numpy_srgb_to_linear(x): x = numpy.clip(x, 0.0, 1.0) return numpy.where(x <= 0.04045, x / 12.92, ((x + 0.055) / 1.055) ** 2.4) def numpy_linear_to_srgb(x): x = numpy.clip(x, 0.0, 1.0) return numpy.where(x <= 0.003130804953560372, x * 12.92, 1.055 * (x ** (1.0 / 2.4)) - 0.055) def torch_srgb_to_linear(x: torch.Tensor): x = torch.clip(x, 0.0, 1.0) return torch.where(torch.le(x, 0.04045), x / 12.92, ((x + 0.055) / 1.055) ** 2.4) def torch_linear_to_srgb(x): x = torch.clip(x, 0.0, 1.0) return torch.where(torch.le(x, 0.003130804953560372), x * 12.92, 1.055 * (x ** (1.0 / 2.4)) - 0.055) def image_linear_to_srgb(image): assert image.shape[2] == 3 or image.shape[2] == 4 if image.shape[2] == 3: return numpy_linear_to_srgb(image) else: height, width, _ = image.shape rgb_image = numpy_linear_to_srgb(image[:, :, 0:3]) a_image = image[:, :, 3:4] return numpy.concatenate((rgb_image, a_image), axis=2) def image_srgb_to_linear(image): assert image.shape[2] == 3 or image.shape[2] == 4 if image.shape[2] == 3: return numpy_srgb_to_linear(image) else: height, width, _ = image.shape rgb_image = numpy_srgb_to_linear(image[:, :, 0:3]) a_image = image[:, :, 3:4] return numpy.concatenate((rgb_image, a_image), axis=2) def save_rng_state(file_name): rng_state = torch.get_rng_state() torch_save(rng_state, file_name) def load_rng_state(file_name): rng_state = torch_load(file_name) torch.set_rng_state(rng_state) def grid_change_to_numpy_image(torch_image, num_channels=3): height = torch_image.shape[1] width = torch_image.shape[2] size_image = (torch_image[0, :, :] ** 2 + torch_image[1, :, :] ** 2).sqrt().view(height, width, 1).numpy() hsv = cm.get_cmap('hsv') angle_image = hsv(((torch.atan2( torch_image[0, :, :].view(height * width), torch_image[1, :, :].view(height * width)).view(height, width) + math.pi) / (2 * math.pi)).numpy()) * 3 numpy_image = size_image * angle_image[:, :, 0:3] rgb_image = numpy_linear_to_srgb(numpy_image) if num_channels == 3: return rgb_image elif num_channels == 4: return numpy.concatenate([rgb_image, numpy.ones_like(size_image)], axis=2) else: raise RuntimeError("Unsupported num_channels: " + str(num_channels)) def rgb_to_numpy_image(torch_image: Tensor, min_pixel_value=-1.0, max_pixel_value=1.0): assert torch_image.dim() == 3 assert torch_image.shape[0] == 3 height = torch_image.shape[1] width = torch_image.shape[2] reshaped_image = torch_image.numpy().reshape(3, height * width).transpose().reshape(height, width, 3) numpy_image = (reshaped_image - min_pixel_value) / (max_pixel_value - min_pixel_value) return numpy_linear_to_srgb(numpy_image) def rgba_to_numpy_image_greenscreen(torch_image: Tensor, min_pixel_value=-1.0, max_pixel_value=1.0, include_alpha=False): height = torch_image.shape[1] width = torch_image.shape[2] numpy_image = (torch_image.numpy().reshape(4, height * width).transpose().reshape(height, width, 4) - min_pixel_value) \ / (max_pixel_value - min_pixel_value) rgb_image = numpy_linear_to_srgb(numpy_image[:, :, 0:3]) a_image = numpy_image[:, :, 3] rgb_image[:, :, 0:3] = rgb_image[:, :, 0:3] * a_image.reshape(a_image.shape[0], a_image.shape[1], 1) rgb_image[:, :, 1] = rgb_image[:, :, 1] + (1 - a_image) if not include_alpha: return rgb_image else: return numpy.concatenate((rgb_image, numpy.ones_like(numpy_image[:, :, 3:4])), axis=2) def rgba_to_numpy_image(torch_image: Tensor, min_pixel_value=-1.0, max_pixel_value=1.0): assert torch_image.dim() == 3 assert torch_image.shape[0] == 4 height = torch_image.shape[1] width = torch_image.shape[2] reshaped_image = torch_image.numpy().reshape(4, height * width).transpose().reshape(height, width, 4) numpy_image = (reshaped_image - min_pixel_value) / (max_pixel_value - min_pixel_value) rgb_image = numpy_linear_to_srgb(numpy_image[:, :, 0:3]) a_image = numpy.clip(numpy_image[:, :, 3], 0.0, 1.0) rgba_image = numpy.concatenate((rgb_image, a_image.reshape(height, width, 1)), axis=2) return rgba_image def extract_numpy_image_from_filelike_with_pytorch_layout(file, has_alpha=True, scale=2.0, offset=-1.0): try: pil_image = PIL.Image.open(file) except Exception as e: raise RuntimeError(file) return extract_numpy_image_from_PIL_image_with_pytorch_layout(pil_image, has_alpha, scale, offset) def extract_numpy_image_from_PIL_image_with_pytorch_layout(pil_image, has_alpha=True, scale=2.0, offset=-1.0): if has_alpha: num_channel = 4 else: num_channel = 3 image_size = pil_image.width # search for transparent pixels(alpha==0) and change them to [0 0 0 0] to avoid the color influence to the model for i, px in enumerate(pil_image.getdata()): if px[3] <= 0: y = i // image_size x = i % image_size pil_image.putpixel((x, y), (0, 0, 0, 0)) raw_image = numpy.asarray(pil_image) image = (raw_image / 255.0).reshape(image_size, image_size, num_channel) image[:, :, 0:3] = numpy_srgb_to_linear(image[:, :, 0:3]) image = image \ .reshape(image_size * image_size, num_channel) \ .transpose() \ .reshape(num_channel, image_size, image_size) * scale + offset return image def extract_pytorch_image_from_filelike(file, has_alpha=True, scale=2.0, offset=-1.0): try: pil_image = PIL.Image.open(file) except Exception as e: raise RuntimeError(file) image = extract_numpy_image_from_PIL_image_with_pytorch_layout(pil_image, has_alpha, scale, offset) return torch.from_numpy(image).float() def extract_pytorch_image_from_PIL_image(pil_image, has_alpha=True, scale=2.0, offset=-1.0): image = extract_numpy_image_from_PIL_image_with_pytorch_layout(pil_image, has_alpha, scale, offset) return torch.from_numpy(image).float() def extract_numpy_image_from_filelike(file): pil_image = PIL.Image.open(file) image_width = pil_image.width image_height = pil_image.height if pil_image.mode == "RGBA": image = (numpy.asarray(pil_image) / 255.0).reshape(image_height, image_width, 4) else: image = (numpy.asarray(pil_image) / 255.0).reshape(image_height, image_width, 3) image[:, :, 0:3] = numpy_srgb_to_linear(image[:, :, 0:3]) return image def convert_avs_to_avi(avs_file, avi_file): os.makedirs(os.path.dirname(avi_file), exist_ok=True) file = open("temp.vdub", "w") file.write("VirtualDub.Open(\"%s\");" % avs_file) file.write("VirtualDub.video.SetCompression(\"cvid\", 0, 10000, 0);") file.write("VirtualDub.SaveAVI(\"%s\");" % avi_file) file.write("VirtualDub.Close();") file.close() os.system("C:\\ProgramData\\chocolatey\\lib\\virtualdub\\tools\\vdub64.exe /i temp.vdub") os.remove("temp.vdub") def convert_avi_to_mp4(avi_file, mp4_file): os.makedirs(os.path.dirname(mp4_file), exist_ok=True) os.system("ffmpeg -y -i %s -c:v libx264 -preset slow -crf 22 -c:a libfaac -b:a 128k %s" % \ (avi_file, mp4_file)) def convert_avi_to_webm(avi_file, webm_file): os.makedirs(os.path.dirname(webm_file), exist_ok=True) os.system("ffmpeg -y -i %s -vcodec libvpx -qmin 0 -qmax 50 -crf 10 -b:v 1M -acodec libvorbis %s" % \ (avi_file, webm_file)) def convert_mp4_to_webm(mp4_file, webm_file): os.makedirs(os.path.dirname(webm_file), exist_ok=True) os.system("ffmpeg -y -i %s -vcodec libvpx -qmin 0 -qmax 50 -crf 10 -b:v 1M -acodec libvorbis %s" % \ (mp4_file, webm_file)) def create_parent_dir(file_name): os.makedirs(os.path.dirname(file_name), exist_ok=True) def run_command(command_parts: List[str]): command = " ".join(command_parts) os.system(command) def save_pytorch_image(image, file_name): if image.shape[0] == 1: image = image.squeeze() if image.shape[0] == 4: numpy_image = rgba_to_numpy_image(image.detach().cpu()) pil_image = PIL.Image.fromarray(numpy.uint8(numpy.rint(numpy_image * 255.0)), mode='RGBA') else: numpy_image = rgb_to_numpy_image(image.detach().cpu()) pil_image = PIL.Image.fromarray(numpy.uint8(numpy.rint(numpy_image * 255.0)), mode='RGB') os.makedirs(os.path.dirname(file_name), exist_ok=True) pil_image.save(file_name) def torch_load(file_name): with open(file_name, 'rb') as f: return torch.load(f) def torch_save(content, file_name): os.makedirs(os.path.dirname(file_name), exist_ok=True) with open(file_name, 'wb') as f: torch.save(content, f) def resize_PIL_image(pil_image, size=(256, 256)): w, h = pil_image.size d = min(w, h) r = ((w - d) // 2, (h - d) // 2, (w + d) // 2, (h + d) // 2) return pil_image.resize(size, resample=PIL.Image.LANCZOS, box=r) def extract_PIL_image_from_filelike(file): return PIL.Image.open(file) def convert_output_image_from_torch_to_numpy(output_image): if output_image.shape[2] == 2: h, w, c = output_image.shape output_image = torch.transpose(output_image.reshape(h * w, c), 0, 1).reshape(c, h, w) if output_image.shape[0] == 4: numpy_image = rgba_to_numpy_image(output_image) elif output_image.shape[0] == 1: c, h, w = output_image.shape alpha_image = torch.cat([output_image.repeat(3, 1, 1) * 2.0 - 1.0, torch.ones(1, h, w)], dim=0) numpy_image = rgba_to_numpy_image(alpha_image) elif output_image.shape[0] == 2: numpy_image = grid_change_to_numpy_image(output_image, num_channels=4) else: raise RuntimeError("Unsupported # image channels: %d" % output_image.shape[0]) return numpy_image