from typing import Optional, Union, Callable from torch.nn import Conv2d, Module, Sequential, ConvTranspose2d from tha3.module.module_factory import ModuleFactory from tha3.nn.nonlinearity_factory import resolve_nonlinearity_factory from tha3.nn.normalization import NormalizationLayerFactory from tha3.nn.util import wrap_conv_or_linear_module, BlockArgs def create_conv7(in_channels: int, out_channels: int, bias: bool = False, initialization_method: Union[str, Callable[[Module], Module]] = 'he', use_spectral_norm: bool = False) -> Module: return wrap_conv_or_linear_module( Conv2d(in_channels, out_channels, kernel_size=7, stride=1, padding=3, bias=bias), initialization_method, use_spectral_norm) def create_conv7_from_block_args(in_channels: int, out_channels: int, bias: bool = False, block_args: Optional[BlockArgs] = None) -> Module: if block_args is None: block_args = BlockArgs() return create_conv7( in_channels, out_channels, bias, block_args.initialization_method, block_args.use_spectral_norm) def create_conv3(in_channels: int, out_channels: int, bias: bool = False, initialization_method: Union[str, Callable[[Module], Module]] = 'he', use_spectral_norm: bool = False) -> Module: return wrap_conv_or_linear_module( Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=bias), initialization_method, use_spectral_norm) def create_conv3_from_block_args(in_channels: int, out_channels: int, bias: bool = False, block_args: Optional[BlockArgs] = None): if block_args is None: block_args = BlockArgs() return create_conv3(in_channels, out_channels, bias, block_args.initialization_method, block_args.use_spectral_norm) def create_conv1(in_channels: int, out_channels: int, initialization_method: Union[str, Callable[[Module], Module]] = 'he', bias: bool = False, use_spectral_norm: bool = False) -> Module: return wrap_conv_or_linear_module( Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=bias), initialization_method, use_spectral_norm) def create_conv1_from_block_args(in_channels: int, out_channels: int, bias: bool = False, block_args: Optional[BlockArgs] = None) -> Module: if block_args is None: block_args = BlockArgs() return create_conv1( in_channels=in_channels, out_channels=out_channels, initialization_method=block_args.initialization_method, bias=bias, use_spectral_norm=block_args.use_spectral_norm) def create_conv7_block(in_channels: int, out_channels: int, initialization_method: Union[str, Callable[[Module], Module]] = 'he', nonlinearity_factory: Optional[ModuleFactory] = None, normalization_layer_factory: Optional[NormalizationLayerFactory] = None, use_spectral_norm: bool = False) -> Module: nonlinearity_factory = resolve_nonlinearity_factory(nonlinearity_factory) return Sequential( create_conv7(in_channels, out_channels, bias=False, initialization_method=initialization_method, use_spectral_norm=use_spectral_norm), NormalizationLayerFactory.resolve_2d(normalization_layer_factory).create(out_channels, affine=True), resolve_nonlinearity_factory(nonlinearity_factory).create()) def create_conv7_block_from_block_args( in_channels: int, out_channels: int, block_args: Optional[BlockArgs] = None) -> Module: if block_args is None: block_args = BlockArgs() return create_conv7_block(in_channels, out_channels, block_args.initialization_method, block_args.nonlinearity_factory, block_args.normalization_layer_factory, block_args.use_spectral_norm) def create_conv3_block(in_channels: int, out_channels: int, initialization_method: Union[str, Callable[[Module], Module]] = 'he', nonlinearity_factory: Optional[ModuleFactory] = None, normalization_layer_factory: Optional[NormalizationLayerFactory] = None, use_spectral_norm: bool = False) -> Module: nonlinearity_factory = resolve_nonlinearity_factory(nonlinearity_factory) return Sequential( create_conv3(in_channels, out_channels, bias=False, initialization_method=initialization_method, use_spectral_norm=use_spectral_norm), NormalizationLayerFactory.resolve_2d(normalization_layer_factory).create(out_channels, affine=True), resolve_nonlinearity_factory(nonlinearity_factory).create()) def create_conv3_block_from_block_args( in_channels: int, out_channels: int, block_args: Optional[BlockArgs] = None): if block_args is None: block_args = BlockArgs() return create_conv3_block(in_channels, out_channels, block_args.initialization_method, block_args.nonlinearity_factory, block_args.normalization_layer_factory, block_args.use_spectral_norm) def create_downsample_block(in_channels: int, out_channels: int, is_output_1x1: bool = False, initialization_method: Union[str, Callable[[Module], Module]] = 'he', nonlinearity_factory: Optional[ModuleFactory] = None, normalization_layer_factory: Optional[NormalizationLayerFactory] = None, use_spectral_norm: bool = False) -> Module: if is_output_1x1: return Sequential( wrap_conv_or_linear_module( Conv2d(in_channels, out_channels, kernel_size=4, stride=2, padding=1, bias=False), initialization_method, use_spectral_norm), resolve_nonlinearity_factory(nonlinearity_factory).create()) else: return Sequential( wrap_conv_or_linear_module( Conv2d(in_channels, out_channels, kernel_size=4, stride=2, padding=1, bias=False), initialization_method, use_spectral_norm), NormalizationLayerFactory.resolve_2d(normalization_layer_factory).create(out_channels, affine=True), resolve_nonlinearity_factory(nonlinearity_factory).create()) def create_downsample_block_from_block_args(in_channels: int, out_channels: int, is_output_1x1: bool = False, block_args: Optional[BlockArgs] = None): if block_args is None: block_args = BlockArgs() return create_downsample_block( in_channels, out_channels, is_output_1x1, block_args.initialization_method, block_args.nonlinearity_factory, block_args.normalization_layer_factory, block_args.use_spectral_norm) def create_upsample_block(in_channels: int, out_channels: int, initialization_method: Union[str, Callable[[Module], Module]] = 'he', nonlinearity_factory: Optional[ModuleFactory] = None, normalization_layer_factory: Optional[NormalizationLayerFactory] = None, use_spectral_norm: bool = False) -> Module: nonlinearity_factory = resolve_nonlinearity_factory(nonlinearity_factory) return Sequential( wrap_conv_or_linear_module( ConvTranspose2d(in_channels, out_channels, kernel_size=4, stride=2, padding=1, bias=False), initialization_method, use_spectral_norm), NormalizationLayerFactory.resolve_2d(normalization_layer_factory).create(out_channels, affine=True), resolve_nonlinearity_factory(nonlinearity_factory).create()) def create_upsample_block_from_block_args(in_channels: int, out_channels: int, block_args: Optional[BlockArgs] = None) -> Module: if block_args is None: block_args = BlockArgs() return create_upsample_block(in_channels, out_channels, block_args.initialization_method, block_args.nonlinearity_factory, block_args.normalization_layer_factory, block_args.use_spectral_norm)