Spaces:
Runtime error
Runtime error
import os | |
os.system('cd monotonic_align && python setup.py build_ext --inplace && cd ..') | |
import logging | |
numba_logger = logging.getLogger('numba') | |
numba_logger.setLevel(logging.WARNING) | |
import librosa | |
import matplotlib.pyplot as plt | |
import IPython.display as ipd | |
import os | |
import json | |
import math | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from torch.utils.data import DataLoader | |
import commons | |
import utils | |
from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate | |
from models import SynthesizerTrn | |
from text.symbols import symbols | |
from text.cleaners import japanese_phrase_cleaners | |
from text import cleaned_text_to_sequence | |
from pypinyin import lazy_pinyin, Style | |
from scipy.io.wavfile import write | |
def get_text(text, hps): | |
text_norm = cleaned_text_to_sequence(text) | |
if hps.data.add_blank: | |
text_norm = commons.intersperse(text_norm, 0) | |
text_norm = torch.LongTensor(text_norm) | |
return text_norm | |
# hps_ms = utils.get_hparams_from_file("./configs/vctk_base.json") | |
hps = utils.get_hparams_from_file("./configs/tokaiteio.json") | |
# net_g_ms = SynthesizerTrn( | |
# len(symbols), | |
# hps_ms.data.filter_length // 2 + 1, | |
# hps_ms.train.segment_size // hps.data.hop_length, | |
# n_speakers=hps_ms.data.n_speakers, | |
# **hps_ms.model) | |
net_g = SynthesizerTrn( | |
len(symbols), | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
**hps.model) | |
_ = net_g.eval() | |
def tts(text): | |
if len(text) > 150: | |
return "Error: Text is too long", None | |
stn_tst = get_text(text, hps) | |
with torch.no_grad(): | |
x_tst = stn_tst.unsqueeze(0) | |
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]) | |
audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.float().numpy() | |
ipd.display(ipd.Audio(audio, rate=hps.data.sampling_rate)) | |
def tts_fn(text, speaker_id): | |
if len(text) > 150: | |
return "Error: Text is too long", None | |
stn_tst = get_text(text, hps) | |
with torch.no_grad(): | |
x_tst = stn_tst.unsqueeze(0) | |
x_tst_lengths = LongTensor([stn_tst.size(0)]) | |
audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][ | |
0, 0].data.cpu().float().numpy() | |
return "Success", (hps.data.sampling_rate, audio) | |
if __name__ == '__main__': | |
_ = utils.load_checkpoint("G_50000.pth", net_g, None) | |
app = gr.Blocks() | |
with app: | |
with gr.Tabs(): | |
with gr.Column(): | |
tts_input1 = gr.TextArea(label="Text (150 words limitation)", value="γγγ«γ‘γ―γ") | |
tts_submit = gr.Button("Generate", variant="primary") | |
tts_output1 = gr.Textbox(label="Output Message") | |
tts_output2 = gr.Audio(label="Output Audio") | |
tts_submit.click(tts_fn, [tts_input1, tts_input2], [tts_output1, tts_output2]) | |
app.launch() |