Spaces:
Runtime error
Runtime error
Delete app.py
Browse files
app.py
DELETED
@@ -1,97 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
os.system('cd monotonic_align && python setup.py build_ext --inplace && cd ..')
|
4 |
-
|
5 |
-
import logging
|
6 |
-
|
7 |
-
numba_logger = logging.getLogger('numba')
|
8 |
-
numba_logger.setLevel(logging.WARNING)
|
9 |
-
|
10 |
-
import librosa
|
11 |
-
|
12 |
-
import matplotlib.pyplot as plt
|
13 |
-
import IPython.display as ipd
|
14 |
-
|
15 |
-
import os
|
16 |
-
import json
|
17 |
-
import math
|
18 |
-
import torch
|
19 |
-
from torch import nn
|
20 |
-
from torch.nn import functional as F
|
21 |
-
from torch.utils.data import DataLoader
|
22 |
-
|
23 |
-
import commons
|
24 |
-
import utils
|
25 |
-
from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate
|
26 |
-
from models import SynthesizerTrn
|
27 |
-
from text.symbols import symbols
|
28 |
-
from text.cleaners import japanese_phrase_cleaners
|
29 |
-
from text import cleaned_text_to_sequence
|
30 |
-
from pypinyin import lazy_pinyin, Style
|
31 |
-
|
32 |
-
from scipy.io.wavfile import write
|
33 |
-
|
34 |
-
def get_text(text, hps):
|
35 |
-
text_norm = cleaned_text_to_sequence(text)
|
36 |
-
if hps.data.add_blank:
|
37 |
-
text_norm = commons.intersperse(text_norm, 0)
|
38 |
-
text_norm = torch.LongTensor(text_norm)
|
39 |
-
return text_norm
|
40 |
-
# hps_ms = utils.get_hparams_from_file("./configs/vctk_base.json")
|
41 |
-
|
42 |
-
|
43 |
-
hps = utils.get_hparams_from_file("./configs/tokaiteio.json")
|
44 |
-
# net_g_ms = SynthesizerTrn(
|
45 |
-
# len(symbols),
|
46 |
-
# hps_ms.data.filter_length // 2 + 1,
|
47 |
-
# hps_ms.train.segment_size // hps.data.hop_length,
|
48 |
-
# n_speakers=hps_ms.data.n_speakers,
|
49 |
-
# **hps_ms.model)
|
50 |
-
|
51 |
-
net_g = SynthesizerTrn(
|
52 |
-
len(symbols),
|
53 |
-
hps.data.filter_length // 2 + 1,
|
54 |
-
hps.train.segment_size // hps.data.hop_length,
|
55 |
-
**hps.model)
|
56 |
-
_ = net_g.eval()
|
57 |
-
|
58 |
-
|
59 |
-
def tts(text):
|
60 |
-
if len(text) > 150:
|
61 |
-
return "Error: Text is too long", None
|
62 |
-
stn_tst = get_text(text, hps)
|
63 |
-
with torch.no_grad():
|
64 |
-
x_tst = stn_tst.unsqueeze(0)
|
65 |
-
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
|
66 |
-
audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.float().numpy()
|
67 |
-
ipd.display(ipd.Audio(audio, rate=hps.data.sampling_rate))
|
68 |
-
|
69 |
-
|
70 |
-
def tts_fn(text, speaker_id):
|
71 |
-
if len(text) > 150:
|
72 |
-
return "Error: Text is too long", None
|
73 |
-
stn_tst = get_text(text, hps)
|
74 |
-
with torch.no_grad():
|
75 |
-
x_tst = stn_tst.unsqueeze(0)
|
76 |
-
x_tst_lengths = LongTensor([stn_tst.size(0)])
|
77 |
-
audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][
|
78 |
-
0, 0].data.cpu().float().numpy()
|
79 |
-
return "Success", (hps.data.sampling_rate, audio)
|
80 |
-
|
81 |
-
|
82 |
-
if __name__ == '__main__':
|
83 |
-
_ = utils.load_checkpoint("G_50000.pth", net_g, None)
|
84 |
-
|
85 |
-
app = gr.Blocks()
|
86 |
-
|
87 |
-
with app:
|
88 |
-
with gr.Tabs():
|
89 |
-
with gr.Column():
|
90 |
-
tts_input1 = gr.TextArea(label="Text (150 words limitation)", value="こんにちは。")
|
91 |
-
tts_submit = gr.Button("Generate", variant="primary")
|
92 |
-
tts_output1 = gr.Textbox(label="Output Message")
|
93 |
-
tts_output2 = gr.Audio(label="Output Audio")
|
94 |
-
|
95 |
-
tts_submit.click(tts_fn, [tts_input1, tts_input2], [tts_output1, tts_output2])
|
96 |
-
|
97 |
-
app.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|