import os os.system('cd monotonic_align && python setup.py build_ext --inplace && cd ..') import librosa import numpy as np import torch from torch import no_grad, LongTensor import commons import utils import gradio as gr from models import SynthesizerTrn from text import text_to_sequence from mel_processing import spectrogram_torch def get_text(text): text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners) if hps.data.add_blank: text_norm = commons.intersperse(text_norm, 0) text_norm = LongTensor(text_norm) return text_norm def tts_fn(text, speaker_id): if len(text) > 150: return "Error: Text is too long", None stn_tst = get_text(text) with no_grad(): x_tst = stn_tst.unsqueeze(0) x_tst_lengths = LongTensor([stn_tst.size(0)]) sid = LongTensor([speaker_id]) audio = model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][ 0, 0].data.cpu().float().numpy() return "Success", (hps.data.sampling_rate, audio) def vc_fn(original_speaker_id, target_speaker_id, input_audio): if input_audio is None: return "You need to upload an audio", None sampling_rate, audio = input_audio duration = audio.shape[0] / sampling_rate if duration > 30: return "Error: Audio is too long", None audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32) if len(audio.shape) > 1: audio = librosa.to_mono(audio.transpose(1, 0)) if sampling_rate != hps.data.sampling_rate: audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=hps.data.sampling_rate) y = torch.FloatTensor(audio) y = y.unsqueeze(0) spec = spectrogram_torch(y, hps.data.filter_length, hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length, center=False) spec_lengths = LongTensor([spec.size(-1)]) sid_src = LongTensor([original_speaker_id]) sid_tgt = LongTensor([target_speaker_id]) with no_grad(): audio = model.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][ 0, 0].data.cpu().float().numpy() return "Success", (hps.data.sampling_rate, audio) if __name__ == '__main__': config_path = "saved_model/config.json" model_path = "saved_model/model.pth" hps = utils.get_hparams_from_file(config_path) model = SynthesizerTrn( len(hps.symbols), hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, n_speakers=hps.data.n_speakers, **hps.model) utils.load_checkpoint(model_path, model, None) model.eval() app = gr.Blocks() with app: with gr.Tabs(): with gr.TabItem("TTS"): with gr.Column(): tts_input1 = gr.TextArea(label="Text (150 words limitation)", value="こんにちは。") tts_input2 = gr.Dropdown(label="Speaker", choices=hps.speakers, type="index", value=hps.speakers[0]) tts_submit = gr.Button("Generate", variant="primary") tts_output1 = gr.Textbox(label="Output Message") tts_output2 = gr.Audio(label="Output Audio") tts_submit.click(tts_fn, [tts_input1, tts_input2], [tts_output1, tts_output2]) vc_submit.click(vc_fn, [vc_input1, vc_input2, vc_input3], [vc_output1, vc_output2]) app.launch()