add demo
Browse files- .gitattributes +2 -0
- app.py +352 -0
- requirements.txt +10 -0
- vocab/idx2word.json +0 -0
- vocab/word2idx.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
models/NormSeq2Seq-188M_epoch35.pt filter=lfs diff=lfs merge=lfs -text
|
37 |
+
models/AttnSeq2Seq-188M_epoch35.pt filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,352 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import re
|
3 |
+
import unicodedata
|
4 |
+
from typing import Tuple
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
|
10 |
+
|
11 |
+
def greet(name):
|
12 |
+
return "Hello " + name + "!!"
|
13 |
+
|
14 |
+
# read word2idx and idx2word from json file
|
15 |
+
|
16 |
+
with open('vocab/word2idx.json', 'r') as f:
|
17 |
+
word2idx = json.load(f)
|
18 |
+
with open('vocab/idx2word.json', 'r') as f:
|
19 |
+
idx2word = json.load(f)
|
20 |
+
|
21 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
+
|
23 |
+
def unicodetoascii(text):
|
24 |
+
"""
|
25 |
+
Turn a Unicode string to plain ASCII
|
26 |
+
|
27 |
+
:param text: text to be converted
|
28 |
+
:return: text in ascii format
|
29 |
+
"""
|
30 |
+
normalized_text = unicodedata.normalize('NFKD', str(text))
|
31 |
+
ascii_text = ''.join(char for char in normalized_text if unicodedata.category(char) != 'Mn')
|
32 |
+
return ascii_text
|
33 |
+
|
34 |
+
def preprocess_text(text, fn=unicodetoascii):
|
35 |
+
|
36 |
+
text = fn(text)
|
37 |
+
text = text.lower()
|
38 |
+
text = re.sub(r'http\S+', '', text)
|
39 |
+
text = re.sub(r'[^\x00-\x7F]+', "", text) # Remove non-ASCII characters
|
40 |
+
text = re.sub(r"(\w)[!?]+(\w)", r'\1\2', text) # Remove !? between words
|
41 |
+
text = re.sub(r"\s\s+", r" ", text).strip() # Remove extra spaces
|
42 |
+
return text
|
43 |
+
|
44 |
+
def tokenize(text):
|
45 |
+
"""
|
46 |
+
Tokenize text
|
47 |
+
:param text: text to be tokenized
|
48 |
+
:return: list of tokens
|
49 |
+
"""
|
50 |
+
return text.split()
|
51 |
+
|
52 |
+
def lookup_words(idx2word, indices):
|
53 |
+
"""
|
54 |
+
Lookup words from indices
|
55 |
+
:param idx2word: index to word mapping
|
56 |
+
:param indices: indices to be converted
|
57 |
+
:return: list of words
|
58 |
+
"""
|
59 |
+
return [idx2word[str(idx)] for idx in indices]
|
60 |
+
|
61 |
+
|
62 |
+
params = {'input_dim': len(word2idx),
|
63 |
+
'emb_dim': 128,
|
64 |
+
'enc_hid_dim': 256,
|
65 |
+
'dec_hid_dim': 256,
|
66 |
+
'dropout': 0.5,
|
67 |
+
'attn_dim': 32,
|
68 |
+
'teacher_forcing_ratio': 0.5,
|
69 |
+
'epochs': 35}
|
70 |
+
|
71 |
+
class Encoder(nn.Module):
|
72 |
+
"""
|
73 |
+
GRU RNN Encoder
|
74 |
+
"""
|
75 |
+
def __init__(self,
|
76 |
+
input_dim: int,
|
77 |
+
emb_dim: int,
|
78 |
+
enc_hid_dim: int,
|
79 |
+
dec_hid_dim: int,
|
80 |
+
dropout: float = 0):
|
81 |
+
super(Encoder, self).__init__()
|
82 |
+
|
83 |
+
# dimension of imput
|
84 |
+
self.input_dim = input_dim
|
85 |
+
# dimension of embedding layer
|
86 |
+
self.emb_dim = emb_dim
|
87 |
+
# dimension of encoding hidden layer
|
88 |
+
self.enc_hid_dim = enc_hid_dim
|
89 |
+
# dimension of decoding hidden layer
|
90 |
+
self.dec_hid_dim = dec_hid_dim
|
91 |
+
|
92 |
+
# create embedding layer use to train embedding representations of the corpus
|
93 |
+
self.embedding = nn.Embedding(input_dim, emb_dim)
|
94 |
+
|
95 |
+
# use GRU for RNN
|
96 |
+
self.rnn = nn.GRU(emb_dim, enc_hid_dim, bidirectional=True, batch_first=False, num_layers=1)
|
97 |
+
self.fc = nn.Linear(enc_hid_dim * 2, dec_hid_dim)
|
98 |
+
# create dropout layer which will help produce a more generalisable model
|
99 |
+
self.dropout = nn.Dropout(dropout)
|
100 |
+
|
101 |
+
def forward(self, src: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
102 |
+
# apply dropout to the embedding layer
|
103 |
+
embedded = self.dropout(self.embedding(src))
|
104 |
+
# generate an output and hidden layer from the rnn
|
105 |
+
outputs, hidden = self.rnn(embedded)
|
106 |
+
hidden = torch.tanh(self.fc(torch.cat((hidden[-2, :, :], hidden[-1, :, :]), dim=1)))
|
107 |
+
return outputs, hidden
|
108 |
+
|
109 |
+
|
110 |
+
class Attention(nn.Module):
|
111 |
+
"""
|
112 |
+
Luong attention
|
113 |
+
"""
|
114 |
+
def __init__(self,
|
115 |
+
enc_hid_dim: int,
|
116 |
+
dec_hid_dim: int,
|
117 |
+
attn_dim: int):
|
118 |
+
super(Attention, self).__init__()
|
119 |
+
|
120 |
+
# dimension of encoding hidden layer
|
121 |
+
self.enc_hid_dim = enc_hid_dim
|
122 |
+
# dimension of decoding hidden layer
|
123 |
+
self.dec_hid_dim = dec_hid_dim
|
124 |
+
self.attn_in = (enc_hid_dim * 2) + dec_hid_dim
|
125 |
+
|
126 |
+
self.attn = nn.Linear(self.attn_in, attn_dim)
|
127 |
+
|
128 |
+
def forward(self,
|
129 |
+
decoder_hidden: torch.Tensor,
|
130 |
+
encoder_outputs: torch.Tensor) -> torch.Tensor:
|
131 |
+
|
132 |
+
src_len = encoder_outputs.shape[0]
|
133 |
+
repeated_decoder_hidden = decoder_hidden.unsqueeze(1).repeat(1, src_len, 1)
|
134 |
+
encoder_outputs = encoder_outputs.permute(1, 0, 2)
|
135 |
+
# Luong attention
|
136 |
+
energy = torch.tanh(self.attn(torch.cat((repeated_decoder_hidden, encoder_outputs), dim=2)))
|
137 |
+
attention = torch.sum(energy, dim=2)
|
138 |
+
|
139 |
+
return F.softmax(attention, dim=1)
|
140 |
+
|
141 |
+
|
142 |
+
class AttnDecoder(nn.Module):
|
143 |
+
"""
|
144 |
+
GRU RNN Decoder with attention
|
145 |
+
"""
|
146 |
+
def __init__(self,
|
147 |
+
output_dim: int,
|
148 |
+
emb_dim: int,
|
149 |
+
enc_hid_dim: int,
|
150 |
+
dec_hid_dim: int,
|
151 |
+
attention: nn.Module,
|
152 |
+
dropout: float = 0):
|
153 |
+
super(AttnDecoder, self).__init__()
|
154 |
+
|
155 |
+
# dimention of output layer
|
156 |
+
self.output_dim = output_dim
|
157 |
+
# dimention of embedding layer
|
158 |
+
self.emb_dim = emb_dim
|
159 |
+
# dimention of encoding hidden layer
|
160 |
+
self.enc_hid_dim = enc_hid_dim
|
161 |
+
# dimention of decoding hidden layer
|
162 |
+
self.dec_hid_dim = dec_hid_dim
|
163 |
+
# drouput rate
|
164 |
+
self.dropout = dropout
|
165 |
+
# attention layer
|
166 |
+
self.attention = attention
|
167 |
+
|
168 |
+
# create embedding layer use to train embedding representations of the corpus
|
169 |
+
self.embedding = nn.Embedding(output_dim, emb_dim)
|
170 |
+
# use GRU for RNN
|
171 |
+
self.rnn = nn.GRU((enc_hid_dim * 2) + emb_dim, dec_hid_dim, batch_first=False, num_layers=1)
|
172 |
+
self.out = nn.Linear(self.attention.attn_in + emb_dim, output_dim)
|
173 |
+
self.dropout = nn.Dropout(dropout)
|
174 |
+
|
175 |
+
def encode_attention(self,
|
176 |
+
decoder_hidden: torch.Tensor,
|
177 |
+
encoder_outputs: torch.Tensor) -> torch.Tensor:
|
178 |
+
|
179 |
+
a = self.attention(decoder_hidden, encoder_outputs)
|
180 |
+
a = a.unsqueeze(1)
|
181 |
+
encoder_outputs = encoder_outputs.permute(1, 0, 2)
|
182 |
+
weighted_encoder_rep = torch.bmm(a, encoder_outputs)
|
183 |
+
weighted_encoder_rep = weighted_encoder_rep.permute(1, 0, 2)
|
184 |
+
return weighted_encoder_rep
|
185 |
+
|
186 |
+
def forward(self,
|
187 |
+
input: torch.Tensor,
|
188 |
+
decoder_hidden: torch.Tensor,
|
189 |
+
encoder_outputs: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
190 |
+
|
191 |
+
input = input.unsqueeze(0)
|
192 |
+
# apply dropout to embedding layer
|
193 |
+
embedded = self.dropout(self.embedding(input))
|
194 |
+
weighted_encoder = self.encode_attention(decoder_hidden, encoder_outputs)
|
195 |
+
|
196 |
+
# generate an output and hidden layer from the rnn
|
197 |
+
rnn_input = torch.cat((embedded, weighted_encoder), dim=2)
|
198 |
+
output, decoder_hidden = self.rnn(rnn_input, decoder_hidden.unsqueeze(0))
|
199 |
+
|
200 |
+
embedded = embedded.squeeze(0)
|
201 |
+
output = output.squeeze(0)
|
202 |
+
weighted_encoder = weighted_encoder.squeeze(0)
|
203 |
+
output = self.out(torch.cat((output, weighted_encoder, embedded), dim=1))
|
204 |
+
return output, decoder_hidden.squeeze(0)
|
205 |
+
|
206 |
+
class Decoder(nn.Module):
|
207 |
+
"""
|
208 |
+
GRU RNN Decoder without attention
|
209 |
+
"""
|
210 |
+
def __init__(self,
|
211 |
+
output_dim: int,
|
212 |
+
emb_dim: int,
|
213 |
+
enc_hid_dim: int,
|
214 |
+
dec_hid_dim: int,
|
215 |
+
dropout: float = 0):
|
216 |
+
super(Decoder, self).__init__()
|
217 |
+
|
218 |
+
# dimention of output layer
|
219 |
+
self.output_dim = output_dim
|
220 |
+
# dimention of embedding layer
|
221 |
+
self.emb_dim = emb_dim
|
222 |
+
# dimention of encoding hidden layer
|
223 |
+
self.enc_hid_dim = enc_hid_dim
|
224 |
+
# dimention of decoding hidden layer
|
225 |
+
self.dec_hid_dim = dec_hid_dim
|
226 |
+
# drouput rate
|
227 |
+
self.dropout = dropout
|
228 |
+
|
229 |
+
# create embedding layer use to train embedding representations of the corpus
|
230 |
+
self.embedding = nn.Embedding(output_dim, emb_dim)
|
231 |
+
# GRU RNN
|
232 |
+
self.rnn = nn.GRU((enc_hid_dim * 2) + emb_dim, dec_hid_dim, batch_first=False, num_layers=1)
|
233 |
+
self.out = nn.Linear((enc_hid_dim * 2) + dec_hid_dim + emb_dim, output_dim)
|
234 |
+
self.dropout = nn.Dropout(dropout)
|
235 |
+
|
236 |
+
def forward(self,
|
237 |
+
input: torch.Tensor,
|
238 |
+
decoder_hidden: torch.Tensor,
|
239 |
+
encoder_outputs: torch.Tensor) -> Tuple[torch.Tensor
|
240 |
+
, torch.Tensor]:
|
241 |
+
|
242 |
+
input = input.unsqueeze(0)
|
243 |
+
# apply dropout to embedding layer
|
244 |
+
embedded = self.dropout(self.embedding(input))
|
245 |
+
context = encoder_outputs[-1,:,:]
|
246 |
+
context = context.repeat(embedded.shape[0], 1, 1)
|
247 |
+
embs_and_context = torch.cat((embedded, context), -1)
|
248 |
+
# generate an output and hidden layer from the rnn
|
249 |
+
output, decoder_hidden = self.rnn(embs_and_context, decoder_hidden.unsqueeze(0))
|
250 |
+
embedded = embedded.squeeze(0)
|
251 |
+
output = output.squeeze(0)
|
252 |
+
context = context.squeeze(0)
|
253 |
+
output = self.out(torch.cat((output, embedded, context), -1))
|
254 |
+
return output, decoder_hidden.squeeze(0)
|
255 |
+
|
256 |
+
class Seq2Seq(nn.Module):
|
257 |
+
"""
|
258 |
+
Seq-2-Seq model combining RNN encoder and RNN decoder
|
259 |
+
"""
|
260 |
+
def __init__(self,
|
261 |
+
encoder: nn.Module,
|
262 |
+
decoder: nn.Module,
|
263 |
+
device: torch.device):
|
264 |
+
super(Seq2Seq, self).__init__()
|
265 |
+
|
266 |
+
self.encoder = encoder
|
267 |
+
self.decoder = decoder
|
268 |
+
self.device = device
|
269 |
+
|
270 |
+
def forward(self,
|
271 |
+
src: torch.Tensor,
|
272 |
+
trg: torch.Tensor,
|
273 |
+
teacher_forcing_ratio: float = 0.5) -> torch.Tensor:
|
274 |
+
src = src.transpose(0, 1) # (max_len, batch_size)
|
275 |
+
trg = trg.transpose(0, 1) # (max_len, batch_size)
|
276 |
+
batch_size = src.shape[1]
|
277 |
+
max_len = trg.shape[0]
|
278 |
+
trg_vocab_size = self.decoder.output_dim
|
279 |
+
|
280 |
+
outputs = torch.zeros(max_len, batch_size, trg_vocab_size).to(self.device)
|
281 |
+
encoder_outputs, hidden = self.encoder(src)
|
282 |
+
|
283 |
+
# first input to the decoder is the <sos> token
|
284 |
+
output = trg[0,:]
|
285 |
+
|
286 |
+
for t in range(1, max_len):
|
287 |
+
output, hidden = self.decoder(output, hidden, encoder_outputs)
|
288 |
+
outputs[t] = output
|
289 |
+
teacher_force = random.random() < teacher_forcing_ratio
|
290 |
+
top1 = output.max(1)[1]
|
291 |
+
output = trg[t] if teacher_force else top1
|
292 |
+
|
293 |
+
return outputs
|
294 |
+
|
295 |
+
|
296 |
+
|
297 |
+
enc = Encoder(input_dim=params['input_dim'], emb_dim=params['emb_dim'], enc_hid_dim=params['enc_hid_dim'], dec_hid_dim=params['dec_hid_dim'], dropout=params['dropout'])
|
298 |
+
attn = Attention(enc_hid_dim=params['enc_hid_dim'], dec_hid_dim=params['dec_hid_dim'], attn_dim=params['attn_dim'])
|
299 |
+
dec = AttnDecoder(output_dim=params['input_dim'], emb_dim=params['emb_dim'], enc_hid_dim=params['enc_hid_dim'], dec_hid_dim=params['dec_hid_dim'], attention=attn, dropout=params['dropout'])
|
300 |
+
attn_model = Seq2Seq(encoder=enc, decoder=dec, device=device)
|
301 |
+
attn_model.load_state_dict(torch.load('models/AttnSeq2Seq-188M_epoch35.pt'))
|
302 |
+
attn_model.to(device)
|
303 |
+
|
304 |
+
enc = Encoder(input_dim=params['input_dim'], emb_dim=params['emb_dim'], enc_hid_dim=params['enc_hid_dim'], dec_hid_dim=params['dec_hid_dim'], dropout=params['dropout'])
|
305 |
+
dec = Decoder(output_dim=params['input_dim'], emb_dim=params['emb_dim'], enc_hid_dim=params['enc_hid_dim'], dec_hid_dim=params['dec_hid_dim'], dropout=params['dropout'])
|
306 |
+
norm_model = Seq2Seq(encoder=enc, decoder=dec, device=device)
|
307 |
+
norm_model.load_state_dict(torch.load('models/NormSeq2Seq-188M_epoch35.pt'))
|
308 |
+
norm_model.to(device)
|
309 |
+
|
310 |
+
models_dict = {'AttentionSeq2Seq-188M': attn_model, 'NormalSeq2Seq-188M': norm_model}
|
311 |
+
|
312 |
+
def generate(models_str, sentence, max_len=12, word2idx=word2idx, idx2word=idx2word,
|
313 |
+
device=device, tokenize=tokenize, preprocess_text=preprocess_text,
|
314 |
+
lookup_words=lookup_words, models_dict=models_dict):
|
315 |
+
"""
|
316 |
+
Generate response
|
317 |
+
:param model: model
|
318 |
+
:param sentence: sentence
|
319 |
+
:param max_len: maximum length of sequence
|
320 |
+
:param word2idx: word to index mapping
|
321 |
+
:param idx2word: index to word mapping
|
322 |
+
:return: response
|
323 |
+
"""
|
324 |
+
model = models_dict[models_str]
|
325 |
+
model.eval()
|
326 |
+
sentence = preprocess_text(sentence)
|
327 |
+
tokens = tokenize(sentence)
|
328 |
+
tokens = [word2idx[token] if token in word2idx else word2idx['<unk>'] for token in tokens]
|
329 |
+
tokens = [word2idx['<bos>']] + tokens + [word2idx['<eos>']]
|
330 |
+
tokens = torch.tensor(tokens, dtype=torch.long).unsqueeze(1).to(device)
|
331 |
+
outputs = [word2idx['<bos>']]
|
332 |
+
with torch.no_grad():
|
333 |
+
encoder_outputs, hidden = model.encoder(tokens)
|
334 |
+
for t in range(max_len):
|
335 |
+
output, hidden = model.decoder(torch.tensor([outputs[-1]], dtype=torch.long).to(device), hidden, encoder_outputs)
|
336 |
+
top1 = output.max(1)[1]
|
337 |
+
outputs.append(top1.item())
|
338 |
+
if top1.item() == word2idx['<eos>']:
|
339 |
+
break
|
340 |
+
response = lookup_words(idx2word, outputs)
|
341 |
+
return ' '.join(response).replace('<bos>', '').replace('<eos>', '').strip()
|
342 |
+
|
343 |
+
|
344 |
+
|
345 |
+
demo = gr.Interface(fn=generate,
|
346 |
+
inputs=[gr.Radio(list(models_dict.keys()), label="Model"),
|
347 |
+
gr.Textbox(lines=2, label="Input Text")],
|
348 |
+
outputs=gr.Textbox(label="Output Text"))
|
349 |
+
|
350 |
+
|
351 |
+
if __name__ == "__main__":
|
352 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
numpy
|
3 |
+
pandas
|
4 |
+
requests
|
5 |
+
spacy
|
6 |
+
torch
|
7 |
+
torchtext
|
8 |
+
nltk
|
9 |
+
sentence-transformers
|
10 |
+
scipy
|
vocab/idx2word.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
vocab/word2idx.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|