update README
Browse files
README.md
CHANGED
@@ -9,4 +9,31 @@ app_file: app.py
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
# Generative Augmented Classifiers
|
13 |
+
|
14 |
+
Main GitHub Repo: [Generative Data Augmentation](https://github.com/zhulinchng/generative-data-augmentation) | Image Classification Demo: [Generative Augmented Classifiers](https://huggingface.co/spaces/czl/generative-augmented-classifiers).
|
15 |
+
|
16 |
+
This demo showcases the performance of image classifiers trained on various datasets as part of the project `Investigating the Effectiveness of Generative Diffusion Models in Synthesizing Images for Data Augmentation in Image Classification' dissertation.
|
17 |
+
|
18 |
+
## Demo Usage Instructions
|
19 |
+
|
20 |
+
1. Select the dataset, the model architecture, training methods, type of training dataset to evaluate the classifier on.
|
21 |
+
2. Upload an image, or click `Sample Random Image` to select a random image from the validation dataset.
|
22 |
+
3. Click `Classify` to classify the image using the selected classifier.
|
23 |
+
4. To download the classifier, click `Download Model: <model_name>`.
|
24 |
+
|
25 |
+
The top 5 predicted labels and their corresponding probabilities are displayed.
|
26 |
+
|
27 |
+
## Configuration
|
28 |
+
|
29 |
+
```bash
|
30 |
+
git clone https://huggingface.co/spaces/czl/generative-augmented-classifiers
|
31 |
+
cd generative-data-augmentation-demo
|
32 |
+
# Setup the data directory structure as shown above
|
33 |
+
conda create --name $env_name python=3.11.* # Replace $env_name with your environment name
|
34 |
+
conda activate $env_name
|
35 |
+
# Visit PyTorch website https://pytorch.org/get-started/previous-versions/#v212 for PyTorch installation instructions.
|
36 |
+
pip install torch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 --index-url # Obtain the correct URL from the PyTorch website
|
37 |
+
pip install -r requirements.txt
|
38 |
+
python app.py
|
39 |
+
```
|
app.py
CHANGED
@@ -223,7 +223,9 @@ if __name__ == "__main__":
|
|
223 |
gr.Markdown(
|
224 |
"""
|
225 |
# Generative Augmented Image Classifiers
|
226 |
-
This demo showcases the performance of image classifiers trained on various datasets.
|
|
|
|
|
227 |
"""
|
228 |
)
|
229 |
with gr.Row():
|
@@ -266,9 +268,7 @@ This demo showcases the performance of image classifiers trained on various data
|
|
266 |
outputs=[training_ds],
|
267 |
)
|
268 |
generate_button = gr.Button("Sample Random Image")
|
269 |
-
random_image_output = gr.Image(
|
270 |
-
type="pil", label="Random Image from Validation Set"
|
271 |
-
)
|
272 |
classify_button_random = gr.Button("Classify")
|
273 |
with gr.Column():
|
274 |
output_label_random = gr.Label(num_top_classes=5)
|
|
|
223 |
gr.Markdown(
|
224 |
"""
|
225 |
# Generative Augmented Image Classifiers
|
226 |
+
This demo showcases the performance of image classifiers trained on various datasets as part of the project `Investigating the Effectiveness of Generative Diffusion Models in Synthesizing Images for Data Augmentation in Image Classification' dissertation.
|
227 |
+
|
228 |
+
Main GitHub Repo: [Generative Data Augmentation](https://github.com/zhulinchng/generative-data-augmentation) | Generative Data Augmentation Demo: [Generative Data Augmented](https://huggingface.co/spaces/czl/generative-data-augmentation-demo).
|
229 |
"""
|
230 |
)
|
231 |
with gr.Row():
|
|
|
268 |
outputs=[training_ds],
|
269 |
)
|
270 |
generate_button = gr.Button("Sample Random Image")
|
271 |
+
random_image_output = gr.Image(type="pil", label="Image to Classify")
|
|
|
|
|
272 |
classify_button_random = gr.Button("Classify")
|
273 |
with gr.Column():
|
274 |
output_label_random = gr.Label(num_top_classes=5)
|