czl commited on
Commit
0102ff7
1 Parent(s): dca4e38

update README

Browse files
Files changed (2) hide show
  1. README.md +28 -1
  2. app.py +4 -4
README.md CHANGED
@@ -9,4 +9,31 @@ app_file: app.py
9
  pinned: false
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  pinned: false
10
  ---
11
 
12
+ # Generative Augmented Classifiers
13
+
14
+ Main GitHub Repo: [Generative Data Augmentation](https://github.com/zhulinchng/generative-data-augmentation) | Image Classification Demo: [Generative Augmented Classifiers](https://huggingface.co/spaces/czl/generative-augmented-classifiers).
15
+
16
+ This demo showcases the performance of image classifiers trained on various datasets as part of the project `Investigating the Effectiveness of Generative Diffusion Models in Synthesizing Images for Data Augmentation in Image Classification' dissertation.
17
+
18
+ ## Demo Usage Instructions
19
+
20
+ 1. Select the dataset, the model architecture, training methods, type of training dataset to evaluate the classifier on.
21
+ 2. Upload an image, or click `Sample Random Image` to select a random image from the validation dataset.
22
+ 3. Click `Classify` to classify the image using the selected classifier.
23
+ 4. To download the classifier, click `Download Model: <model_name>`.
24
+
25
+ The top 5 predicted labels and their corresponding probabilities are displayed.
26
+
27
+ ## Configuration
28
+
29
+ ```bash
30
+ git clone https://huggingface.co/spaces/czl/generative-augmented-classifiers
31
+ cd generative-data-augmentation-demo
32
+ # Setup the data directory structure as shown above
33
+ conda create --name $env_name python=3.11.* # Replace $env_name with your environment name
34
+ conda activate $env_name
35
+ # Visit PyTorch website https://pytorch.org/get-started/previous-versions/#v212 for PyTorch installation instructions.
36
+ pip install torch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 --index-url # Obtain the correct URL from the PyTorch website
37
+ pip install -r requirements.txt
38
+ python app.py
39
+ ```
app.py CHANGED
@@ -223,7 +223,9 @@ if __name__ == "__main__":
223
  gr.Markdown(
224
  """
225
  # Generative Augmented Image Classifiers
226
- This demo showcases the performance of image classifiers trained on various datasets.
 
 
227
  """
228
  )
229
  with gr.Row():
@@ -266,9 +268,7 @@ This demo showcases the performance of image classifiers trained on various data
266
  outputs=[training_ds],
267
  )
268
  generate_button = gr.Button("Sample Random Image")
269
- random_image_output = gr.Image(
270
- type="pil", label="Random Image from Validation Set"
271
- )
272
  classify_button_random = gr.Button("Classify")
273
  with gr.Column():
274
  output_label_random = gr.Label(num_top_classes=5)
 
223
  gr.Markdown(
224
  """
225
  # Generative Augmented Image Classifiers
226
+ This demo showcases the performance of image classifiers trained on various datasets as part of the project `Investigating the Effectiveness of Generative Diffusion Models in Synthesizing Images for Data Augmentation in Image Classification' dissertation.
227
+
228
+ Main GitHub Repo: [Generative Data Augmentation](https://github.com/zhulinchng/generative-data-augmentation) | Generative Data Augmentation Demo: [Generative Data Augmented](https://huggingface.co/spaces/czl/generative-data-augmentation-demo).
229
  """
230
  )
231
  with gr.Row():
 
268
  outputs=[training_ds],
269
  )
270
  generate_button = gr.Button("Sample Random Image")
271
+ random_image_output = gr.Image(type="pil", label="Image to Classify")
 
 
272
  classify_button_random = gr.Button("Classify")
273
  with gr.Column():
274
  output_label_random = gr.Label(num_top_classes=5)