Spaces:
Running
on
Zero
Running
on
Zero
test img2img
Browse files- app.py +79 -46
- requirements.txt +9 -2
- tools/synth.py +935 -0
app.py
CHANGED
@@ -1,49 +1,72 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
-
import random
|
4 |
-
from diffusers import DiffusionPipeline
|
5 |
import torch
|
6 |
|
|
|
|
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
8 |
|
9 |
if torch.cuda.is_available():
|
10 |
torch.cuda.max_memory_allocated(device=device)
|
11 |
-
pipe =
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
MAX_SEED = np.iinfo(np.int32).max
|
19 |
MAX_IMAGE_SIZE = 1024
|
20 |
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
if randomize_seed:
|
24 |
seed = random.randint(0, MAX_SEED)
|
25 |
-
|
26 |
generator = torch.Generator().manual_seed(seed)
|
27 |
-
|
28 |
image = pipe(
|
29 |
-
prompt
|
30 |
-
negative_prompt
|
31 |
-
guidance_scale
|
32 |
-
num_inference_steps
|
33 |
-
width
|
34 |
-
height
|
35 |
-
generator
|
36 |
-
|
37 |
-
|
|
|
38 |
return image
|
39 |
|
|
|
40 |
examples = [
|
41 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
42 |
"An astronaut riding a green horse",
|
43 |
"A delicious ceviche cheesecake slice",
|
44 |
]
|
45 |
|
46 |
-
css="""
|
47 |
#col-container {
|
48 |
margin: 0 auto;
|
49 |
max-width: 520px;
|
@@ -56,15 +79,17 @@ else:
|
|
56 |
power_device = "CPU"
|
57 |
|
58 |
with gr.Blocks(css=css) as demo:
|
59 |
-
|
60 |
with gr.Column(elem_id="col-container"):
|
61 |
-
gr.Markdown(
|
|
|
62 |
# Text-to-Image Gradio Template
|
63 |
Currently running on {power_device}.
|
64 |
-
"""
|
65 |
-
|
|
|
66 |
with gr.Row():
|
67 |
-
|
68 |
prompt = gr.Text(
|
69 |
label="Prompt",
|
70 |
show_label=False,
|
@@ -72,20 +97,21 @@ with gr.Blocks(css=css) as demo:
|
|
72 |
placeholder="Enter your prompt",
|
73 |
container=False,
|
74 |
)
|
75 |
-
|
|
|
76 |
run_button = gr.Button("Run", scale=0)
|
77 |
-
|
78 |
result = gr.Image(label="Result", show_label=False)
|
79 |
|
80 |
with gr.Accordion("Advanced Settings", open=False):
|
81 |
-
|
82 |
negative_prompt = gr.Text(
|
83 |
label="Negative prompt",
|
84 |
max_lines=1,
|
85 |
placeholder="Enter a negative prompt",
|
86 |
visible=False,
|
87 |
)
|
88 |
-
|
89 |
seed = gr.Slider(
|
90 |
label="Seed",
|
91 |
minimum=0,
|
@@ -93,11 +119,11 @@ with gr.Blocks(css=css) as demo:
|
|
93 |
step=1,
|
94 |
value=0,
|
95 |
)
|
96 |
-
|
97 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
98 |
-
|
99 |
with gr.Row():
|
100 |
-
|
101 |
width = gr.Slider(
|
102 |
label="Width",
|
103 |
minimum=256,
|
@@ -105,7 +131,7 @@ with gr.Blocks(css=css) as demo:
|
|
105 |
step=32,
|
106 |
value=512,
|
107 |
)
|
108 |
-
|
109 |
height = gr.Slider(
|
110 |
label="Height",
|
111 |
minimum=256,
|
@@ -113,9 +139,9 @@ with gr.Blocks(css=css) as demo:
|
|
113 |
step=32,
|
114 |
value=512,
|
115 |
)
|
116 |
-
|
117 |
with gr.Row():
|
118 |
-
|
119 |
guidance_scale = gr.Slider(
|
120 |
label="Guidance scale",
|
121 |
minimum=0.0,
|
@@ -123,7 +149,7 @@ with gr.Blocks(css=css) as demo:
|
|
123 |
step=0.1,
|
124 |
value=0.0,
|
125 |
)
|
126 |
-
|
127 |
num_inference_steps = gr.Slider(
|
128 |
label="Number of inference steps",
|
129 |
minimum=1,
|
@@ -131,16 +157,23 @@ with gr.Blocks(css=css) as demo:
|
|
131 |
step=1,
|
132 |
value=2,
|
133 |
)
|
134 |
-
|
135 |
-
gr.Examples(
|
136 |
-
examples = examples,
|
137 |
-
inputs = [prompt]
|
138 |
-
)
|
139 |
|
140 |
run_button.click(
|
141 |
-
fn
|
142 |
-
inputs
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
)
|
145 |
|
146 |
-
demo.queue().launch()
|
|
|
1 |
+
import random
|
2 |
+
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
|
|
|
|
5 |
import torch
|
6 |
|
7 |
+
from tools import synth
|
8 |
+
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
model_path = "runwayml/stable-diffusion-v1-5"
|
11 |
|
12 |
if torch.cuda.is_available():
|
13 |
torch.cuda.max_memory_allocated(device=device)
|
14 |
+
pipe = synth.pipe_img(
|
15 |
+
model_path=model_path,
|
16 |
+
device=device,
|
17 |
+
use_torchcompile=False,
|
18 |
+
use_safetensors=True,
|
19 |
+
)
|
20 |
+
else:
|
21 |
+
pipe = synth.pipe_img(
|
22 |
+
model_path=model_path,
|
23 |
+
device=device,
|
24 |
+
use_torchcompile=False,
|
25 |
+
use_safetensors=True,
|
26 |
+
)
|
27 |
|
28 |
MAX_SEED = np.iinfo(np.int32).max
|
29 |
MAX_IMAGE_SIZE = 1024
|
30 |
|
31 |
+
|
32 |
+
def infer(
|
33 |
+
input_image,
|
34 |
+
prompt,
|
35 |
+
negative_prompt,
|
36 |
+
seed,
|
37 |
+
randomize_seed,
|
38 |
+
width,
|
39 |
+
height,
|
40 |
+
guidance_scale,
|
41 |
+
num_inference_steps,
|
42 |
+
):
|
43 |
|
44 |
if randomize_seed:
|
45 |
seed = random.randint(0, MAX_SEED)
|
46 |
+
|
47 |
generator = torch.Generator().manual_seed(seed)
|
48 |
+
|
49 |
image = pipe(
|
50 |
+
prompt=prompt,
|
51 |
+
negative_prompt=negative_prompt,
|
52 |
+
guidance_scale=guidance_scale,
|
53 |
+
num_inference_steps=num_inference_steps,
|
54 |
+
width=width,
|
55 |
+
height=height,
|
56 |
+
generator=generator,
|
57 |
+
image=input_image,
|
58 |
+
).images[0]
|
59 |
+
|
60 |
return image
|
61 |
|
62 |
+
|
63 |
examples = [
|
64 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
65 |
"An astronaut riding a green horse",
|
66 |
"A delicious ceviche cheesecake slice",
|
67 |
]
|
68 |
|
69 |
+
css = """
|
70 |
#col-container {
|
71 |
margin: 0 auto;
|
72 |
max-width: 520px;
|
|
|
79 |
power_device = "CPU"
|
80 |
|
81 |
with gr.Blocks(css=css) as demo:
|
82 |
+
|
83 |
with gr.Column(elem_id="col-container"):
|
84 |
+
gr.Markdown(
|
85 |
+
f"""
|
86 |
# Text-to-Image Gradio Template
|
87 |
Currently running on {power_device}.
|
88 |
+
"""
|
89 |
+
)
|
90 |
+
|
91 |
with gr.Row():
|
92 |
+
|
93 |
prompt = gr.Text(
|
94 |
label="Prompt",
|
95 |
show_label=False,
|
|
|
97 |
placeholder="Enter your prompt",
|
98 |
container=False,
|
99 |
)
|
100 |
+
input_image = gr.Image(type="pil", label="Input Image")
|
101 |
+
|
102 |
run_button = gr.Button("Run", scale=0)
|
103 |
+
|
104 |
result = gr.Image(label="Result", show_label=False)
|
105 |
|
106 |
with gr.Accordion("Advanced Settings", open=False):
|
107 |
+
|
108 |
negative_prompt = gr.Text(
|
109 |
label="Negative prompt",
|
110 |
max_lines=1,
|
111 |
placeholder="Enter a negative prompt",
|
112 |
visible=False,
|
113 |
)
|
114 |
+
|
115 |
seed = gr.Slider(
|
116 |
label="Seed",
|
117 |
minimum=0,
|
|
|
119 |
step=1,
|
120 |
value=0,
|
121 |
)
|
122 |
+
|
123 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
124 |
+
|
125 |
with gr.Row():
|
126 |
+
|
127 |
width = gr.Slider(
|
128 |
label="Width",
|
129 |
minimum=256,
|
|
|
131 |
step=32,
|
132 |
value=512,
|
133 |
)
|
134 |
+
|
135 |
height = gr.Slider(
|
136 |
label="Height",
|
137 |
minimum=256,
|
|
|
139 |
step=32,
|
140 |
value=512,
|
141 |
)
|
142 |
+
|
143 |
with gr.Row():
|
144 |
+
|
145 |
guidance_scale = gr.Slider(
|
146 |
label="Guidance scale",
|
147 |
minimum=0.0,
|
|
|
149 |
step=0.1,
|
150 |
value=0.0,
|
151 |
)
|
152 |
+
|
153 |
num_inference_steps = gr.Slider(
|
154 |
label="Number of inference steps",
|
155 |
minimum=1,
|
|
|
157 |
step=1,
|
158 |
value=2,
|
159 |
)
|
160 |
+
|
161 |
+
gr.Examples(examples=examples, inputs=[prompt])
|
|
|
|
|
|
|
162 |
|
163 |
run_button.click(
|
164 |
+
fn=infer,
|
165 |
+
inputs=[
|
166 |
+
input_image,
|
167 |
+
prompt,
|
168 |
+
negative_prompt,
|
169 |
+
seed,
|
170 |
+
randomize_seed,
|
171 |
+
width,
|
172 |
+
height,
|
173 |
+
guidance_scale,
|
174 |
+
num_inference_steps,
|
175 |
+
],
|
176 |
+
outputs=[result],
|
177 |
)
|
178 |
|
179 |
+
demo.queue().launch()
|
requirements.txt
CHANGED
@@ -1,6 +1,13 @@
|
|
1 |
accelerate
|
2 |
diffusers
|
3 |
invisible_watermark
|
4 |
-
torch
|
|
|
|
|
5 |
transformers
|
6 |
-
xformers
|
|
|
|
|
|
|
|
|
|
|
|
1 |
accelerate
|
2 |
diffusers
|
3 |
invisible_watermark
|
4 |
+
torch==2.1.2
|
5 |
+
torchaudio==2.1.2
|
6 |
+
torchvision==0.16.2
|
7 |
transformers
|
8 |
+
xformers==0.0.23.post1
|
9 |
+
DeepCache
|
10 |
+
pandas
|
11 |
+
numpy
|
12 |
+
torchmetrics[image]
|
13 |
+
gradio
|
tools/synth.py
ADDED
@@ -0,0 +1,935 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Helper scripts for generating synthetic images using diffusion model.
|
3 |
+
|
4 |
+
Functions:
|
5 |
+
- get_top_misclassified
|
6 |
+
- get_class_list
|
7 |
+
- generateClassPairs
|
8 |
+
- outputDirectory
|
9 |
+
- pipe_img
|
10 |
+
- createPrompts
|
11 |
+
- interpolatePrompts
|
12 |
+
- slerp
|
13 |
+
- get_middle_elements
|
14 |
+
- remove_middle
|
15 |
+
- genClassImg
|
16 |
+
- getMetadata
|
17 |
+
- groupbyInterpolation
|
18 |
+
- ungroupInterpolation
|
19 |
+
- groupAllbyInterpolation
|
20 |
+
- getPairIndices
|
21 |
+
- generateImagesFromDataset
|
22 |
+
- generateTrace
|
23 |
+
"""
|
24 |
+
|
25 |
+
import json
|
26 |
+
import os
|
27 |
+
|
28 |
+
import numpy as np
|
29 |
+
import pandas as pd
|
30 |
+
import torch
|
31 |
+
from DeepCache import DeepCacheSDHelper
|
32 |
+
from diffusers import (
|
33 |
+
LMSDiscreteScheduler,
|
34 |
+
StableDiffusionImg2ImgPipeline,
|
35 |
+
)
|
36 |
+
from torch import nn
|
37 |
+
from torchmetrics.functional.image import structural_similarity_index_measure as ssim
|
38 |
+
from torchvision import transforms
|
39 |
+
|
40 |
+
|
41 |
+
def get_top_misclassified(val_classifier_json):
|
42 |
+
"""
|
43 |
+
Retrieves the top misclassified classes from a validation classifier JSON file.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
val_classifier_json (str): The path to the validation classifier JSON file.
|
47 |
+
|
48 |
+
Returns:
|
49 |
+
dict: A dictionary containing the top misclassified classes, where the keys are the class names
|
50 |
+
and the values are the number of misclassifications.
|
51 |
+
"""
|
52 |
+
with open(val_classifier_json) as f:
|
53 |
+
val_output = json.load(f)
|
54 |
+
val_metrics_df = pd.DataFrame.from_dict(
|
55 |
+
val_output["val_metrics_details"], orient="index"
|
56 |
+
)
|
57 |
+
class_dict = dict()
|
58 |
+
for k, v in val_metrics_df["top_n_classes"].items():
|
59 |
+
class_dict[k] = v
|
60 |
+
return class_dict
|
61 |
+
|
62 |
+
|
63 |
+
def get_class_list(val_classifier_json):
|
64 |
+
"""
|
65 |
+
Retrieves the list of classes from the given validation classifier JSON file.
|
66 |
+
|
67 |
+
Args:
|
68 |
+
val_classifier_json (str): The path to the validation classifier JSON file.
|
69 |
+
|
70 |
+
Returns:
|
71 |
+
list: A sorted list of class names extracted from the JSON file.
|
72 |
+
"""
|
73 |
+
with open(val_classifier_json, "r") as f:
|
74 |
+
data = json.load(f)
|
75 |
+
return sorted(list(data["val_metrics_details"].keys()))
|
76 |
+
|
77 |
+
|
78 |
+
def generateClassPairs(val_classifier_json):
|
79 |
+
"""
|
80 |
+
Generate pairs of misclassified classes from the given validation classifier JSON.
|
81 |
+
|
82 |
+
Args:
|
83 |
+
val_classifier_json (str): The path to the validation classifier JSON file.
|
84 |
+
|
85 |
+
Returns:
|
86 |
+
list: A sorted list of pairs of misclassified classes.
|
87 |
+
"""
|
88 |
+
pairs = set()
|
89 |
+
misclassified_classes = get_top_misclassified(val_classifier_json)
|
90 |
+
for key, value in misclassified_classes.items():
|
91 |
+
for v in value:
|
92 |
+
pairs.add(tuple(sorted([key, v])))
|
93 |
+
return sorted(list(pairs))
|
94 |
+
|
95 |
+
|
96 |
+
def outputDirectory(class_pairs, synth_path, metadata_path):
|
97 |
+
"""
|
98 |
+
Creates the output directory structure for the synthesized data.
|
99 |
+
|
100 |
+
Args:
|
101 |
+
class_pairs (list): A list of class pairs.
|
102 |
+
synth_path (str): The path to the directory where the synthesized data will be stored.
|
103 |
+
metadata_path (str): The path to the directory where the metadata will be stored.
|
104 |
+
|
105 |
+
Returns:
|
106 |
+
None
|
107 |
+
"""
|
108 |
+
for id in class_pairs:
|
109 |
+
class_folder = f"{synth_path}/{id}"
|
110 |
+
if not (os.path.exists(class_folder)):
|
111 |
+
os.makedirs(class_folder)
|
112 |
+
if not (os.path.exists(metadata_path)):
|
113 |
+
os.makedirs(metadata_path)
|
114 |
+
print("Info: Output directory ready.")
|
115 |
+
|
116 |
+
|
117 |
+
def pipe_img(
|
118 |
+
model_path,
|
119 |
+
device="cuda",
|
120 |
+
apply_optimization=True,
|
121 |
+
use_torchcompile=False,
|
122 |
+
ci_cb=(5, 1),
|
123 |
+
use_safetensors=None,
|
124 |
+
cpu_offload=False,
|
125 |
+
scheduler=None,
|
126 |
+
):
|
127 |
+
"""
|
128 |
+
Creates and returns an image-to-image pipeline for stable diffusion.
|
129 |
+
|
130 |
+
Args:
|
131 |
+
model_path (str): The path to the pretrained model.
|
132 |
+
device (str, optional): The device to use for computation. Defaults to "cuda".
|
133 |
+
apply_optimization (bool, optional): Whether to apply optimization techniques. Defaults to True.
|
134 |
+
use_torchcompile (bool, optional): Whether to use torchcompile for model compilation. Defaults to False.
|
135 |
+
ci_cb (tuple, optional): A tuple containing the cache interval and cache branch ID. Defaults to (5, 1).
|
136 |
+
use_safetensors (bool, optional): Whether to use safetensors. Defaults to None.
|
137 |
+
cpu_offload (bool, optional): Whether to enable CPU offloading. Defaults to False.
|
138 |
+
scheduler (LMSDiscreteScheduler, optional): The scheduler for the pipeline. Defaults to None.
|
139 |
+
|
140 |
+
Returns:
|
141 |
+
StableDiffusionImg2ImgPipeline: The image-to-image pipeline for stable diffusion.
|
142 |
+
"""
|
143 |
+
###############################
|
144 |
+
# Reference:
|
145 |
+
# Akimov, R. (2024) Images Interpolation with Stable Diffusion - Hugging Face Open-Source AI Cookbook. Available at: https://huggingface.co/learn/cookbook/en/stable_diffusion_interpolation (Accessed: 4 June 2024).
|
146 |
+
###############################
|
147 |
+
if scheduler is None:
|
148 |
+
scheduler = LMSDiscreteScheduler(
|
149 |
+
beta_start=0.00085,
|
150 |
+
beta_end=0.012,
|
151 |
+
beta_schedule="scaled_linear",
|
152 |
+
num_train_timesteps=1000,
|
153 |
+
steps_offset=1,
|
154 |
+
)
|
155 |
+
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
156 |
+
model_path,
|
157 |
+
scheduler=scheduler,
|
158 |
+
torch_dtype=torch.float32,
|
159 |
+
use_safetensors=use_safetensors,
|
160 |
+
safety_checker=None,
|
161 |
+
).to(device)
|
162 |
+
if cpu_offload:
|
163 |
+
pipe.enable_model_cpu_offload()
|
164 |
+
if apply_optimization:
|
165 |
+
# tomesd.apply_patch(pipe, ratio=0.5)
|
166 |
+
helper = DeepCacheSDHelper(pipe=pipe)
|
167 |
+
cache_interval, cache_branch_id = ci_cb
|
168 |
+
helper.set_params(
|
169 |
+
cache_interval=cache_interval, cache_branch_id=cache_branch_id
|
170 |
+
) # lower is faster but lower quality
|
171 |
+
helper.enable()
|
172 |
+
pipe.enable_xformers_memory_efficient_attention()
|
173 |
+
if use_torchcompile:
|
174 |
+
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
175 |
+
return pipe
|
176 |
+
|
177 |
+
|
178 |
+
def createPrompts(
|
179 |
+
class_name_pairs,
|
180 |
+
prompt_structure=None,
|
181 |
+
use_default_negative_prompt=False,
|
182 |
+
negative_prompt=None,
|
183 |
+
):
|
184 |
+
"""
|
185 |
+
Create prompts for image generation.
|
186 |
+
|
187 |
+
Args:
|
188 |
+
class_name_pairs (list): A list of two class names.
|
189 |
+
prompt_structure (str, optional): The structure of the prompt. Defaults to "a photo of a <class_name>".
|
190 |
+
use_default_negative_prompt (bool, optional): Whether to use the default negative prompt. Defaults to False.
|
191 |
+
negative_prompt (str, optional): The negative prompt to steer the generation away from certain features.
|
192 |
+
|
193 |
+
Returns:
|
194 |
+
tuple: A tuple containing two lists - prompts and negative_prompts.
|
195 |
+
prompts (list): Text prompts that describe the desired output image.
|
196 |
+
negative_prompts (list): Negative prompts that can be used to steer the generation away from certain features.
|
197 |
+
"""
|
198 |
+
if prompt_structure is None:
|
199 |
+
prompt_structure = "a photo of a <class_name>"
|
200 |
+
elif "<class_name>" not in prompt_structure:
|
201 |
+
raise ValueError(
|
202 |
+
"The prompt structure must contain the <class_name> placeholder."
|
203 |
+
)
|
204 |
+
if use_default_negative_prompt:
|
205 |
+
default_negative_prompt = (
|
206 |
+
"blurry image, disfigured, deformed, distorted, cartoon, drawings"
|
207 |
+
)
|
208 |
+
negative_prompt = default_negative_prompt
|
209 |
+
|
210 |
+
class1 = class_name_pairs[0]
|
211 |
+
class2 = class_name_pairs[1]
|
212 |
+
prompt1 = prompt_structure.replace("<class_name>", class1)
|
213 |
+
prompt2 = prompt_structure.replace("<class_name>", class2)
|
214 |
+
prompts = [prompt1, prompt2]
|
215 |
+
if negative_prompt is None:
|
216 |
+
print("Info: Negative prompt not provided, returning as None.")
|
217 |
+
return prompts, None
|
218 |
+
else:
|
219 |
+
# Negative prompts that can be used to steer the generation away from certain features.
|
220 |
+
negative_prompts = [negative_prompt] * len(prompts)
|
221 |
+
return prompts, negative_prompts
|
222 |
+
|
223 |
+
|
224 |
+
def interpolatePrompts(
|
225 |
+
prompts,
|
226 |
+
pipeline,
|
227 |
+
num_interpolation_steps,
|
228 |
+
sample_mid_interpolation,
|
229 |
+
remove_n_middle=0,
|
230 |
+
device="cuda",
|
231 |
+
):
|
232 |
+
"""
|
233 |
+
Interpolates prompts by generating intermediate embeddings between pairs of prompts.
|
234 |
+
|
235 |
+
Args:
|
236 |
+
prompts (List[str]): A list of prompts to be interpolated.
|
237 |
+
pipeline: The pipeline object containing the tokenizer and text encoder.
|
238 |
+
num_interpolation_steps (int): The number of interpolation steps between each pair of prompts.
|
239 |
+
sample_mid_interpolation (int): The number of intermediate embeddings to sample from the middle of the interpolated prompts.
|
240 |
+
remove_n_middle (int, optional): The number of middle embeddings to remove from the interpolated prompts. Defaults to 0.
|
241 |
+
device (str, optional): The device to run the interpolation on. Defaults to "cuda".
|
242 |
+
|
243 |
+
Returns:
|
244 |
+
interpolated_prompt_embeds (torch.Tensor): The interpolated prompt embeddings.
|
245 |
+
prompt_metadata (dict): Metadata about the interpolation process, including similarity scores and nearest class information.
|
246 |
+
|
247 |
+
e.g. if num_interpolation_steps = 10, sample_mid_interpolation = 6, remove_n_middle = 2
|
248 |
+
Interpolated: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
|
249 |
+
Sampled: [2, 3, 4, 5, 6, 7]
|
250 |
+
Removed: x x
|
251 |
+
Returns: [2, 3, 6, 7]
|
252 |
+
"""
|
253 |
+
|
254 |
+
###############################
|
255 |
+
# Reference:
|
256 |
+
# Akimov, R. (2024) Images Interpolation with Stable Diffusion - Hugging Face Open-Source AI Cookbook. Available at: https://huggingface.co/learn/cookbook/en/stable_diffusion_interpolation (Accessed: 4 June 2024).
|
257 |
+
###############################
|
258 |
+
|
259 |
+
def slerp(v0, v1, num, t0=0, t1=1):
|
260 |
+
"""
|
261 |
+
Performs spherical linear interpolation between two vectors.
|
262 |
+
|
263 |
+
Args:
|
264 |
+
v0 (torch.Tensor): The starting vector.
|
265 |
+
v1 (torch.Tensor): The ending vector.
|
266 |
+
num (int): The number of interpolation points.
|
267 |
+
t0 (float, optional): The starting time. Defaults to 0.
|
268 |
+
t1 (float, optional): The ending time. Defaults to 1.
|
269 |
+
|
270 |
+
Returns:
|
271 |
+
torch.Tensor: The interpolated vectors.
|
272 |
+
|
273 |
+
"""
|
274 |
+
###############################
|
275 |
+
# Reference:
|
276 |
+
# Karpathy, A. (2022) hacky stablediffusion code for generating videos, Gist. Available at: https://gist.github.com/karpathy/00103b0037c5aaea32fe1da1af553355 (Accessed: 4 June 2024).
|
277 |
+
###############################
|
278 |
+
v0 = v0.detach().cpu().numpy()
|
279 |
+
v1 = v1.detach().cpu().numpy()
|
280 |
+
|
281 |
+
def interpolation(t, v0, v1, DOT_THRESHOLD=0.9995):
|
282 |
+
"""helper function to spherically interpolate two arrays v1 v2"""
|
283 |
+
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
|
284 |
+
if np.abs(dot) > DOT_THRESHOLD:
|
285 |
+
v2 = (1 - t) * v0 + t * v1
|
286 |
+
else:
|
287 |
+
theta_0 = np.arccos(dot)
|
288 |
+
sin_theta_0 = np.sin(theta_0)
|
289 |
+
theta_t = theta_0 * t
|
290 |
+
sin_theta_t = np.sin(theta_t)
|
291 |
+
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
|
292 |
+
s1 = sin_theta_t / sin_theta_0
|
293 |
+
v2 = s0 * v0 + s1 * v1
|
294 |
+
return v2
|
295 |
+
|
296 |
+
t = np.linspace(t0, t1, num)
|
297 |
+
|
298 |
+
v3 = torch.tensor(np.array([interpolation(t[i], v0, v1) for i in range(num)]))
|
299 |
+
|
300 |
+
return v3
|
301 |
+
|
302 |
+
def get_middle_elements(lst, n):
|
303 |
+
"""
|
304 |
+
Returns a tuple containing a sublist of the middle elements of the given list `lst` and a range of indices of those elements.
|
305 |
+
|
306 |
+
Args:
|
307 |
+
lst (list): The list from which to extract the middle elements.
|
308 |
+
n (int): The number of middle elements to extract.
|
309 |
+
|
310 |
+
Returns:
|
311 |
+
tuple: A tuple containing the sublist of middle elements and a range of indices.
|
312 |
+
|
313 |
+
Raises:
|
314 |
+
None
|
315 |
+
|
316 |
+
Examples:
|
317 |
+
lst = [1, 2, 3, 4, 5]
|
318 |
+
get_middle_elements(lst, 3)
|
319 |
+
([2, 3, 4], range(2, 5))
|
320 |
+
"""
|
321 |
+
if n % 2 == 0: # Even number of elements
|
322 |
+
middle_index = len(lst) // 2 - 1
|
323 |
+
start = middle_index - n // 2 + 1
|
324 |
+
end = middle_index + n // 2 + 1
|
325 |
+
return lst[start:end], range(start, end)
|
326 |
+
else: # Odd number of elements
|
327 |
+
middle_index = len(lst) // 2
|
328 |
+
start = middle_index - n // 2
|
329 |
+
end = middle_index + n // 2 + 1
|
330 |
+
return lst[start:end], range(start, end)
|
331 |
+
|
332 |
+
def remove_middle(data, n):
|
333 |
+
"""
|
334 |
+
Remove the middle n elements from a list.
|
335 |
+
|
336 |
+
Args:
|
337 |
+
data (list): The input list.
|
338 |
+
n (int): The number of elements to remove from the middle of the list.
|
339 |
+
|
340 |
+
Returns:
|
341 |
+
list: The modified list with the middle n elements removed.
|
342 |
+
|
343 |
+
Raises:
|
344 |
+
ValueError: If n is negative or greater than the length of the list.
|
345 |
+
|
346 |
+
"""
|
347 |
+
if n < 0 or n > len(data):
|
348 |
+
raise ValueError(
|
349 |
+
"Invalid value for n. It should be non-negative and less than half the list length"
|
350 |
+
)
|
351 |
+
|
352 |
+
# Find the middle index
|
353 |
+
middle = len(data) // 2
|
354 |
+
|
355 |
+
# Create slices to exclude the middle n elements
|
356 |
+
if n == 1:
|
357 |
+
return data[:middle] + data[middle + 1 :]
|
358 |
+
elif n % 2 == 0:
|
359 |
+
return data[: middle - n // 2] + data[middle + n // 2 :]
|
360 |
+
else:
|
361 |
+
return data[: middle - n // 2] + data[middle + n // 2 + 1 :]
|
362 |
+
|
363 |
+
batch_size = len(prompts)
|
364 |
+
|
365 |
+
# Tokenizing and encoding prompts into embeddings.
|
366 |
+
prompts_tokens = pipeline.tokenizer(
|
367 |
+
prompts,
|
368 |
+
padding="max_length",
|
369 |
+
max_length=pipeline.tokenizer.model_max_length,
|
370 |
+
truncation=True,
|
371 |
+
return_tensors="pt",
|
372 |
+
)
|
373 |
+
prompts_embeds = pipeline.text_encoder(prompts_tokens.input_ids.to(device))[0]
|
374 |
+
|
375 |
+
# Interpolating between embeddings pairs for the given number of interpolation steps.
|
376 |
+
interpolated_prompt_embeds = []
|
377 |
+
|
378 |
+
for i in range(batch_size - 1):
|
379 |
+
interpolated_prompt_embeds.append(
|
380 |
+
slerp(prompts_embeds[i], prompts_embeds[i + 1], num_interpolation_steps)
|
381 |
+
)
|
382 |
+
|
383 |
+
full_interpolated_prompt_embeds = interpolated_prompt_embeds[:]
|
384 |
+
interpolated_prompt_embeds[0], sample_range = get_middle_elements(
|
385 |
+
interpolated_prompt_embeds[0], sample_mid_interpolation
|
386 |
+
)
|
387 |
+
|
388 |
+
if remove_n_middle > 0:
|
389 |
+
interpolated_prompt_embeds[0] = remove_middle(
|
390 |
+
interpolated_prompt_embeds[0], remove_n_middle
|
391 |
+
)
|
392 |
+
|
393 |
+
prompt_metadata = dict()
|
394 |
+
similarity = nn.CosineSimilarity(dim=-1, eps=1e-6)
|
395 |
+
for i in range(num_interpolation_steps):
|
396 |
+
class1_sim = (
|
397 |
+
similarity(
|
398 |
+
full_interpolated_prompt_embeds[0][0],
|
399 |
+
full_interpolated_prompt_embeds[0][i],
|
400 |
+
)
|
401 |
+
.mean()
|
402 |
+
.item()
|
403 |
+
)
|
404 |
+
class2_sim = (
|
405 |
+
similarity(
|
406 |
+
full_interpolated_prompt_embeds[0][num_interpolation_steps - 1],
|
407 |
+
full_interpolated_prompt_embeds[0][i],
|
408 |
+
)
|
409 |
+
.mean()
|
410 |
+
.item()
|
411 |
+
)
|
412 |
+
relative_distance = class1_sim / (class1_sim + class2_sim)
|
413 |
+
|
414 |
+
prompt_metadata[i] = {
|
415 |
+
"selected": i in sample_range,
|
416 |
+
"similarity": {
|
417 |
+
"class1": class1_sim,
|
418 |
+
"class2": class2_sim,
|
419 |
+
"class1_relative_distance": relative_distance,
|
420 |
+
"class2_relative_distance": 1 - relative_distance,
|
421 |
+
},
|
422 |
+
"nearest_class": int(relative_distance < 0.5),
|
423 |
+
}
|
424 |
+
|
425 |
+
interpolated_prompt_embeds = torch.cat(interpolated_prompt_embeds, dim=0).to(device)
|
426 |
+
return interpolated_prompt_embeds, prompt_metadata
|
427 |
+
|
428 |
+
|
429 |
+
def genClassImg(
|
430 |
+
pipeline,
|
431 |
+
pos_embed,
|
432 |
+
neg_embed,
|
433 |
+
input_image,
|
434 |
+
generator,
|
435 |
+
latents,
|
436 |
+
num_imgs=1,
|
437 |
+
height=512,
|
438 |
+
width=512,
|
439 |
+
num_inference_steps=25,
|
440 |
+
guidance_scale=7.5,
|
441 |
+
):
|
442 |
+
"""
|
443 |
+
Generate class image using the given inputs.
|
444 |
+
|
445 |
+
Args:
|
446 |
+
pipeline: The pipeline object used for image generation.
|
447 |
+
pos_embed: The positive embedding for the class.
|
448 |
+
neg_embed: The negative embedding for the class (optional).
|
449 |
+
input_image: The input image for guidance (optional).
|
450 |
+
generator: The generator model used for image generation.
|
451 |
+
latents: The latent vectors used for image generation.
|
452 |
+
num_imgs: The number of images to generate (default is 1).
|
453 |
+
height: The height of the generated images (default is 512).
|
454 |
+
width: The width of the generated images (default is 512).
|
455 |
+
num_inference_steps: The number of inference steps for image generation (default is 25).
|
456 |
+
guidance_scale: The scale factor for guidance (default is 7.5).
|
457 |
+
|
458 |
+
Returns:
|
459 |
+
The generated class image.
|
460 |
+
"""
|
461 |
+
|
462 |
+
if neg_embed is not None:
|
463 |
+
npe = neg_embed[None, ...]
|
464 |
+
else:
|
465 |
+
npe = None
|
466 |
+
|
467 |
+
return pipeline(
|
468 |
+
height=height,
|
469 |
+
width=width,
|
470 |
+
num_images_per_prompt=num_imgs,
|
471 |
+
prompt_embeds=pos_embed[None, ...],
|
472 |
+
negative_prompt_embeds=npe,
|
473 |
+
num_inference_steps=num_inference_steps,
|
474 |
+
guidance_scale=guidance_scale,
|
475 |
+
generator=generator,
|
476 |
+
latents=latents,
|
477 |
+
image=input_image,
|
478 |
+
).images[0]
|
479 |
+
|
480 |
+
|
481 |
+
def getMetadata(
|
482 |
+
class_pairs,
|
483 |
+
path,
|
484 |
+
seed,
|
485 |
+
guidance_scale,
|
486 |
+
num_inference_steps,
|
487 |
+
num_interpolation_steps,
|
488 |
+
sample_mid_interpolation,
|
489 |
+
height,
|
490 |
+
width,
|
491 |
+
prompts,
|
492 |
+
negative_prompts,
|
493 |
+
pipeline,
|
494 |
+
prompt_metadata,
|
495 |
+
negative_prompt_metadata,
|
496 |
+
ssim_metadata=None,
|
497 |
+
save_json=True,
|
498 |
+
save_path=".",
|
499 |
+
):
|
500 |
+
"""
|
501 |
+
Generate metadata for the given parameters.
|
502 |
+
|
503 |
+
Args:
|
504 |
+
class_pairs (list): List of class pairs.
|
505 |
+
path (str): Path to the data.
|
506 |
+
seed (int): Seed value for randomization.
|
507 |
+
guidance_scale (float): Scale factor for guidance.
|
508 |
+
num_inference_steps (int): Number of inference steps.
|
509 |
+
num_interpolation_steps (int): Number of interpolation steps.
|
510 |
+
sample_mid_interpolation (bool): Flag to sample mid-interpolation.
|
511 |
+
height (int): Height of the image.
|
512 |
+
width (int): Width of the image.
|
513 |
+
prompts (list): List of prompts.
|
514 |
+
negative_prompts (list): List of negative prompts.
|
515 |
+
pipeline (object): Pipeline object.
|
516 |
+
prompt_metadata (dict): Metadata for prompts.
|
517 |
+
negative_prompt_metadata (dict): Metadata for negative prompts.
|
518 |
+
ssim_metadata (dict, optional): SSIM scores metadata. Defaults to None.
|
519 |
+
save_json (bool, optional): Flag to save metadata as JSON. Defaults to True.
|
520 |
+
save_path (str, optional): Path to save the JSON file. Defaults to ".".
|
521 |
+
|
522 |
+
Returns:
|
523 |
+
dict: Generated metadata.
|
524 |
+
"""
|
525 |
+
|
526 |
+
metadata = dict()
|
527 |
+
|
528 |
+
metadata["class_pairs"] = class_pairs
|
529 |
+
metadata["path"] = path
|
530 |
+
metadata["seed"] = seed
|
531 |
+
metadata["params"] = {
|
532 |
+
"CFG": guidance_scale,
|
533 |
+
"inferenceSteps": num_inference_steps,
|
534 |
+
"interpolationSteps": num_interpolation_steps,
|
535 |
+
"sampleMidInterpolation": sample_mid_interpolation,
|
536 |
+
"height": height,
|
537 |
+
"width": width,
|
538 |
+
}
|
539 |
+
for i in range(len(prompts)):
|
540 |
+
metadata[f"prompt_text_{i}"] = prompts[i]
|
541 |
+
if negative_prompts is not None:
|
542 |
+
metadata[f"negative_prompt_text_{i}"] = negative_prompts[i]
|
543 |
+
metadata["pipe_config"] = dict(pipeline.config)
|
544 |
+
metadata["prompt_embed_similarity"] = prompt_metadata
|
545 |
+
metadata["negative_prompt_embed_similarity"] = negative_prompt_metadata
|
546 |
+
if ssim_metadata is not None:
|
547 |
+
print("Info: SSIM scores are available.")
|
548 |
+
metadata["ssim_scores"] = ssim_metadata
|
549 |
+
if save_json:
|
550 |
+
with open(
|
551 |
+
os.path.join(save_path, f"{'_'.join(i for i in class_pairs)}_{seed}.json"),
|
552 |
+
"w",
|
553 |
+
) as f:
|
554 |
+
json.dump(metadata, f, indent=4)
|
555 |
+
return metadata
|
556 |
+
|
557 |
+
|
558 |
+
def groupbyInterpolation(dir_to_classfolder):
|
559 |
+
"""
|
560 |
+
Group files in a directory by interpolation step.
|
561 |
+
|
562 |
+
Args:
|
563 |
+
dir_to_classfolder (str): The path to the directory containing the files.
|
564 |
+
|
565 |
+
Returns:
|
566 |
+
None
|
567 |
+
"""
|
568 |
+
files = [
|
569 |
+
(f.split(sep="_")[1].split(sep=".")[0], os.path.join(dir_to_classfolder, f))
|
570 |
+
for f in os.listdir(dir_to_classfolder)
|
571 |
+
]
|
572 |
+
# create a subfolder for each step of the interpolation
|
573 |
+
for interpolation_step, file_path in files:
|
574 |
+
new_dir = os.path.join(dir_to_classfolder, interpolation_step)
|
575 |
+
if not os.path.exists(new_dir):
|
576 |
+
os.makedirs(new_dir)
|
577 |
+
os.rename(file_path, os.path.join(new_dir, os.path.basename(file_path)))
|
578 |
+
|
579 |
+
|
580 |
+
def ungroupInterpolation(dir_to_classfolder):
|
581 |
+
"""
|
582 |
+
Moves all files from subdirectories within `dir_to_classfolder` to `dir_to_classfolder` itself,
|
583 |
+
and then removes the subdirectories.
|
584 |
+
|
585 |
+
Args:
|
586 |
+
dir_to_classfolder (str): The path to the directory containing the subdirectories.
|
587 |
+
|
588 |
+
Returns:
|
589 |
+
None
|
590 |
+
"""
|
591 |
+
for interpolation_step in os.listdir(dir_to_classfolder):
|
592 |
+
if os.path.isdir(os.path.join(dir_to_classfolder, interpolation_step)):
|
593 |
+
for f in os.listdir(os.path.join(dir_to_classfolder, interpolation_step)):
|
594 |
+
os.rename(
|
595 |
+
os.path.join(dir_to_classfolder, interpolation_step, f),
|
596 |
+
os.path.join(dir_to_classfolder, f),
|
597 |
+
)
|
598 |
+
os.rmdir(os.path.join(dir_to_classfolder, interpolation_step))
|
599 |
+
|
600 |
+
|
601 |
+
def groupAllbyInterpolation(
|
602 |
+
data_path,
|
603 |
+
group=True,
|
604 |
+
fn_group=groupbyInterpolation,
|
605 |
+
fn_ungroup=ungroupInterpolation,
|
606 |
+
):
|
607 |
+
"""
|
608 |
+
Group or ungroup all data classes by interpolation.
|
609 |
+
|
610 |
+
Args:
|
611 |
+
data_path (str): The path to the data.
|
612 |
+
group (bool, optional): Whether to group the data. Defaults to True.
|
613 |
+
fn_group (function, optional): The function to use for grouping. Defaults to groupbyInterpolation.
|
614 |
+
fn_ungroup (function, optional): The function to use for ungrouping. Defaults to ungroupInterpolation.
|
615 |
+
"""
|
616 |
+
data_classes = sorted(os.listdir(data_path))
|
617 |
+
if group:
|
618 |
+
fn = fn_group
|
619 |
+
else:
|
620 |
+
fn = fn_ungroup
|
621 |
+
for c in data_classes:
|
622 |
+
c_path = os.path.join(data_path, c)
|
623 |
+
if os.path.isdir(c_path):
|
624 |
+
fn(c_path)
|
625 |
+
print(f"Processed {c}")
|
626 |
+
|
627 |
+
|
628 |
+
def getPairIndices(subset_len, total_pair_count=1, seed=None):
|
629 |
+
"""
|
630 |
+
Generate pairs of indices for a given subset length.
|
631 |
+
|
632 |
+
Args:
|
633 |
+
subset_len (int): The length of the subset.
|
634 |
+
total_pair_count (int, optional): The total number of pairs to generate. Defaults to 1.
|
635 |
+
seed (int, optional): The seed value for the random number generator. Defaults to None.
|
636 |
+
|
637 |
+
Returns:
|
638 |
+
list: A list of pairs of indices.
|
639 |
+
|
640 |
+
"""
|
641 |
+
rng = np.random.default_rng(seed)
|
642 |
+
group_size = (subset_len + total_pair_count - 1) // total_pair_count
|
643 |
+
numbers = list(range(subset_len))
|
644 |
+
numbers_selection = list(range(subset_len))
|
645 |
+
rng.shuffle(numbers)
|
646 |
+
for i in range(group_size - subset_len % group_size):
|
647 |
+
numbers.append(numbers_selection[i])
|
648 |
+
numbers = np.array(numbers)
|
649 |
+
groups = numbers[: group_size * total_pair_count].reshape(-1, group_size)
|
650 |
+
return groups.tolist()
|
651 |
+
|
652 |
+
|
653 |
+
def generateImagesFromDataset(
|
654 |
+
img_subsets,
|
655 |
+
class_iterables,
|
656 |
+
pipeline,
|
657 |
+
interpolated_prompt_embeds,
|
658 |
+
interpolated_negative_prompts_embeds,
|
659 |
+
num_inference_steps,
|
660 |
+
guidance_scale,
|
661 |
+
height=512,
|
662 |
+
width=512,
|
663 |
+
seed=None,
|
664 |
+
save_path=".",
|
665 |
+
class_pairs=("0", "1"),
|
666 |
+
save_image=True,
|
667 |
+
image_type="jpg",
|
668 |
+
interpolate_range="full",
|
669 |
+
device="cuda",
|
670 |
+
return_images=False,
|
671 |
+
):
|
672 |
+
"""
|
673 |
+
Generates images from a dataset using the given parameters.
|
674 |
+
|
675 |
+
Args:
|
676 |
+
img_subsets (dict): A dictionary containing image subsets for each class.
|
677 |
+
class_iterables (dict): A dictionary containing iterable objects for each class.
|
678 |
+
pipeline (object): The pipeline object used for image generation.
|
679 |
+
interpolated_prompt_embeds (list): A list of interpolated prompt embeddings.
|
680 |
+
interpolated_negative_prompts_embeds (list): A list of interpolated negative prompt embeddings.
|
681 |
+
num_inference_steps (int): The number of inference steps for image generation.
|
682 |
+
guidance_scale (float): The scale factor for guidance loss during image generation.
|
683 |
+
height (int, optional): The height of the generated images. Defaults to 512.
|
684 |
+
width (int, optional): The width of the generated images. Defaults to 512.
|
685 |
+
seed (int, optional): The seed value for random number generation. Defaults to None.
|
686 |
+
save_path (str, optional): The path to save the generated images. Defaults to ".".
|
687 |
+
class_pairs (tuple, optional): A tuple containing pairs of class identifiers. Defaults to ("0", "1").
|
688 |
+
save_image (bool, optional): Whether to save the generated images. Defaults to True.
|
689 |
+
image_type (str, optional): The file format of the saved images. Defaults to "jpg".
|
690 |
+
interpolate_range (str, optional): The range of interpolation for prompt embeddings.
|
691 |
+
Possible values are "full", "nearest", or "furthest". Defaults to "full".
|
692 |
+
device (str, optional): The device to use for image generation. Defaults to "cuda".
|
693 |
+
return_images (bool, optional): Whether to return the generated images. Defaults to False.
|
694 |
+
|
695 |
+
Returns:
|
696 |
+
dict or tuple: If return_images is True, returns a dictionary containing the generated images for each class and a dictionary containing the SSIM scores for each class and interpolation step.
|
697 |
+
If return_images is False, returns a dictionary containing the SSIM scores for each class and interpolation step.
|
698 |
+
"""
|
699 |
+
if interpolate_range == "nearest":
|
700 |
+
nearest_half = True
|
701 |
+
furthest_half = False
|
702 |
+
elif interpolate_range == "furthest":
|
703 |
+
nearest_half = False
|
704 |
+
furthest_half = True
|
705 |
+
else:
|
706 |
+
nearest_half = False
|
707 |
+
furthest_half = False
|
708 |
+
|
709 |
+
if seed is None:
|
710 |
+
seed = torch.Generator().seed()
|
711 |
+
generator = torch.manual_seed(seed)
|
712 |
+
rng = np.random.default_rng(seed)
|
713 |
+
# Generating initial U-Net latent vectors from a random normal distribution.
|
714 |
+
latents = torch.randn(
|
715 |
+
(1, pipeline.unet.config.in_channels, height // 8, width // 8),
|
716 |
+
generator=generator,
|
717 |
+
).to(device)
|
718 |
+
|
719 |
+
embed_len = len(interpolated_prompt_embeds)
|
720 |
+
embed_pairs = zip(interpolated_prompt_embeds, interpolated_negative_prompts_embeds)
|
721 |
+
embed_pairs_list = list(embed_pairs)
|
722 |
+
if return_images:
|
723 |
+
class_images = dict()
|
724 |
+
class_ssim = dict()
|
725 |
+
|
726 |
+
if nearest_half or furthest_half:
|
727 |
+
if nearest_half:
|
728 |
+
steps_range = (range(0, embed_len // 2), range(embed_len // 2, embed_len))
|
729 |
+
mutiplier = 2
|
730 |
+
elif furthest_half:
|
731 |
+
# uses opposite class of images of the text interpolation
|
732 |
+
steps_range = (range(embed_len // 2, embed_len), range(0, embed_len // 2))
|
733 |
+
mutiplier = 2
|
734 |
+
else:
|
735 |
+
steps_range = (range(embed_len), range(embed_len))
|
736 |
+
mutiplier = 1
|
737 |
+
|
738 |
+
for class_iter, class_id in enumerate(class_pairs):
|
739 |
+
if return_images:
|
740 |
+
class_images[class_id] = list()
|
741 |
+
class_ssim[class_id] = {
|
742 |
+
i: {"ssim_sum": 0, "ssim_count": 0, "ssim_avg": 0} for i in range(embed_len)
|
743 |
+
}
|
744 |
+
subset_len = len(img_subsets[class_id])
|
745 |
+
# to efficiently randomize the steps to interpolate for each image in the class, group_map is used
|
746 |
+
# group_map: index is the image id, element is the group id
|
747 |
+
# steps_range[class_iter] determines the range of steps to interpolate for the class,
|
748 |
+
# so the first half of the steps are for the first class and so on. range(0,7) and range(8,15) for 16 steps
|
749 |
+
# then the rest is to multiply the steps to cover the whole subset + remainder
|
750 |
+
group_map = (
|
751 |
+
list(steps_range[class_iter]) * mutiplier * (subset_len // embed_len + 1)
|
752 |
+
)
|
753 |
+
rng.shuffle(
|
754 |
+
group_map
|
755 |
+
) # shuffle the steps to interpolate for each image, position in the group_map is mapped to the image id
|
756 |
+
|
757 |
+
iter_indices = class_iterables[class_id].pop()
|
758 |
+
# generate images for each image in the class, randomly selecting an interpolated step
|
759 |
+
for image_id in iter_indices:
|
760 |
+
img, trg = img_subsets[class_id][image_id]
|
761 |
+
input_image = img.unsqueeze(0)
|
762 |
+
interpolate_step = group_map[image_id]
|
763 |
+
prompt_embeds, negative_prompt_embeds = embed_pairs_list[interpolate_step]
|
764 |
+
generated_image = genClassImg(
|
765 |
+
pipeline,
|
766 |
+
prompt_embeds,
|
767 |
+
negative_prompt_embeds,
|
768 |
+
input_image,
|
769 |
+
generator,
|
770 |
+
latents,
|
771 |
+
num_imgs=1,
|
772 |
+
height=height,
|
773 |
+
width=width,
|
774 |
+
num_inference_steps=num_inference_steps,
|
775 |
+
guidance_scale=guidance_scale,
|
776 |
+
)
|
777 |
+
pred_image = transforms.ToTensor()(generated_image).unsqueeze(0)
|
778 |
+
ssim_score = ssim(pred_image, input_image).item()
|
779 |
+
class_ssim[class_id][interpolate_step]["ssim_sum"] += ssim_score
|
780 |
+
class_ssim[class_id][interpolate_step]["ssim_count"] += 1
|
781 |
+
if return_images:
|
782 |
+
class_images[class_id].append(generated_image)
|
783 |
+
if save_image:
|
784 |
+
if image_type == "jpg":
|
785 |
+
generated_image.save(
|
786 |
+
f"{save_path}/{class_id}/{seed}-{image_id}_{interpolate_step}.{image_type}",
|
787 |
+
format="JPEG",
|
788 |
+
quality=95,
|
789 |
+
)
|
790 |
+
elif image_type == "png":
|
791 |
+
generated_image.save(
|
792 |
+
f"{save_path}/{class_id}/{seed}-{image_id}_{interpolate_step}.{image_type}",
|
793 |
+
format="PNG",
|
794 |
+
)
|
795 |
+
else:
|
796 |
+
generated_image.save(
|
797 |
+
f"{save_path}/{class_id}/{seed}-{image_id}_{interpolate_step}.{image_type}"
|
798 |
+
)
|
799 |
+
|
800 |
+
# calculate ssim avg for the class
|
801 |
+
for i_step in range(embed_len):
|
802 |
+
if class_ssim[class_id][i_step]["ssim_count"] > 0:
|
803 |
+
class_ssim[class_id][i_step]["ssim_avg"] = (
|
804 |
+
class_ssim[class_id][i_step]["ssim_sum"]
|
805 |
+
/ class_ssim[class_id][i_step]["ssim_count"]
|
806 |
+
)
|
807 |
+
|
808 |
+
if return_images:
|
809 |
+
return class_images, class_ssim
|
810 |
+
else:
|
811 |
+
return class_ssim
|
812 |
+
|
813 |
+
|
814 |
+
def generateTrace(
|
815 |
+
prompts,
|
816 |
+
img_subsets,
|
817 |
+
class_iterables,
|
818 |
+
interpolated_prompt_embeds,
|
819 |
+
interpolated_negative_prompts_embeds,
|
820 |
+
subset_indices,
|
821 |
+
seed=None,
|
822 |
+
save_path=".",
|
823 |
+
class_pairs=("0", "1"),
|
824 |
+
image_type="jpg",
|
825 |
+
interpolate_range="full",
|
826 |
+
save_prompt_embeds=False,
|
827 |
+
):
|
828 |
+
"""
|
829 |
+
Generate a trace dictionary containing information about the generated images.
|
830 |
+
|
831 |
+
Args:
|
832 |
+
prompts (list): List of prompt texts.
|
833 |
+
img_subsets (dict): Dictionary containing image subsets for each class.
|
834 |
+
class_iterables (dict): Dictionary containing iterable objects for each class.
|
835 |
+
interpolated_prompt_embeds (torch.Tensor): Tensor containing interpolated prompt embeddings.
|
836 |
+
interpolated_negative_prompts_embeds (torch.Tensor): Tensor containing interpolated negative prompt embeddings.
|
837 |
+
subset_indices (dict): Dictionary containing indices of subsets for each class.
|
838 |
+
seed (int, optional): Seed value for random number generation. Defaults to None.
|
839 |
+
save_path (str, optional): Path to save the generated images. Defaults to ".".
|
840 |
+
class_pairs (tuple, optional): Tuple containing class pairs. Defaults to ("0", "1").
|
841 |
+
image_type (str, optional): Type of the generated images. Defaults to "jpg".
|
842 |
+
interpolate_range (str, optional): Range of interpolation. Defaults to "full".
|
843 |
+
save_prompt_embeds (bool, optional): Flag to save prompt embeddings. Defaults to False.
|
844 |
+
|
845 |
+
Returns:
|
846 |
+
dict: Trace dictionary containing information about the generated images.
|
847 |
+
"""
|
848 |
+
trace_dict = {
|
849 |
+
"class_pairs": list(),
|
850 |
+
"class_id": list(),
|
851 |
+
"image_id": list(),
|
852 |
+
"interpolation_step": list(),
|
853 |
+
"embed_len": list(),
|
854 |
+
"pos_prompt_text": list(),
|
855 |
+
"neg_prompt_text": list(),
|
856 |
+
"input_file_path": list(),
|
857 |
+
"output_file_path": list(),
|
858 |
+
"input_prompts_embed": list(),
|
859 |
+
}
|
860 |
+
|
861 |
+
if interpolate_range == "nearest":
|
862 |
+
nearest_half = True
|
863 |
+
furthest_half = False
|
864 |
+
elif interpolate_range == "furthest":
|
865 |
+
nearest_half = False
|
866 |
+
furthest_half = True
|
867 |
+
else:
|
868 |
+
nearest_half = False
|
869 |
+
furthest_half = False
|
870 |
+
|
871 |
+
if seed is None:
|
872 |
+
seed = torch.Generator().seed()
|
873 |
+
rng = np.random.default_rng(seed)
|
874 |
+
|
875 |
+
embed_len = len(interpolated_prompt_embeds)
|
876 |
+
embed_pairs = zip(
|
877 |
+
interpolated_prompt_embeds.cpu().numpy(),
|
878 |
+
interpolated_negative_prompts_embeds.cpu().numpy(),
|
879 |
+
)
|
880 |
+
embed_pairs_list = list(embed_pairs)
|
881 |
+
|
882 |
+
if nearest_half or furthest_half:
|
883 |
+
if nearest_half:
|
884 |
+
steps_range = (range(0, embed_len // 2), range(embed_len // 2, embed_len))
|
885 |
+
mutiplier = 2
|
886 |
+
elif furthest_half:
|
887 |
+
# uses opposite class of images of the text interpolation
|
888 |
+
steps_range = (range(embed_len // 2, embed_len), range(0, embed_len // 2))
|
889 |
+
mutiplier = 2
|
890 |
+
else:
|
891 |
+
steps_range = (range(embed_len), range(embed_len))
|
892 |
+
mutiplier = 1
|
893 |
+
|
894 |
+
for class_iter, class_id in enumerate(class_pairs):
|
895 |
+
|
896 |
+
subset_len = len(img_subsets[class_id])
|
897 |
+
# to efficiently randomize the steps to interpolate for each image in the class, group_map is used
|
898 |
+
# group_map: index is the image id, element is the group id
|
899 |
+
# steps_range[class_iter] determines the range of steps to interpolate for the class,
|
900 |
+
# so the first half of the steps are for the first class and so on. range(0,7) and range(8,15) for 16 steps
|
901 |
+
# then the rest is to multiply the steps to cover the whole subset + remainder
|
902 |
+
group_map = (
|
903 |
+
list(steps_range[class_iter]) * mutiplier * (subset_len // embed_len + 1)
|
904 |
+
)
|
905 |
+
rng.shuffle(
|
906 |
+
group_map
|
907 |
+
) # shuffle the steps to interpolate for each image, position in the group_map is mapped to the image id
|
908 |
+
|
909 |
+
iter_indices = class_iterables[class_id].pop()
|
910 |
+
# generate images for each image in the class, randomly selecting an interpolated step
|
911 |
+
for image_id in iter_indices:
|
912 |
+
class_ds = img_subsets[class_id]
|
913 |
+
interpolate_step = group_map[image_id]
|
914 |
+
sample_count = subset_indices[class_id][0] + image_id
|
915 |
+
input_file = os.path.normpath(class_ds.dataset.samples[sample_count][0])
|
916 |
+
pos_prompt = prompts[0]
|
917 |
+
neg_prompt = prompts[1]
|
918 |
+
output_file = f"{save_path}/{class_id}/{seed}-{image_id}_{interpolate_step}.{image_type}"
|
919 |
+
if save_prompt_embeds:
|
920 |
+
input_prompts_embed = embed_pairs_list[interpolate_step]
|
921 |
+
else:
|
922 |
+
input_prompts_embed = None
|
923 |
+
|
924 |
+
trace_dict["class_pairs"].append(class_pairs)
|
925 |
+
trace_dict["class_id"].append(class_id)
|
926 |
+
trace_dict["image_id"].append(image_id)
|
927 |
+
trace_dict["interpolation_step"].append(interpolate_step)
|
928 |
+
trace_dict["embed_len"].append(embed_len)
|
929 |
+
trace_dict["pos_prompt_text"].append(pos_prompt)
|
930 |
+
trace_dict["neg_prompt_text"].append(neg_prompt)
|
931 |
+
trace_dict["input_file_path"].append(input_file)
|
932 |
+
trace_dict["output_file_path"].append(output_file)
|
933 |
+
trace_dict["input_prompts_embed"].append(input_prompts_embed)
|
934 |
+
|
935 |
+
return trace_dict
|