Spaces:
Runtime error
Runtime error
HaoFeng2019
commited on
Commit
•
240c20c
1
Parent(s):
2ade88a
Upload 12 files
Browse files- app.py +97 -0
- distorted/42_2 copy.png +0 -0
- distorted/63_2 copy.png +0 -0
- extractor.py +115 -0
- inference.py +128 -0
- model.py +267 -0
- model_pretrained/DocGeoNet.pth +3 -0
- model_pretrained/preprocess.pth +3 -0
- position_encoding.py +110 -0
- requirements.txt +7 -0
- seg.py +567 -0
- unet.py +401 -0
app.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import numpy as np
|
5 |
+
import cv2
|
6 |
+
import os
|
7 |
+
from PIL import Image
|
8 |
+
import warnings
|
9 |
+
import gradio as gr
|
10 |
+
|
11 |
+
from model import DocGeoNet
|
12 |
+
from seg import U2NETP
|
13 |
+
import glob
|
14 |
+
|
15 |
+
|
16 |
+
warnings.filterwarnings('ignore')
|
17 |
+
|
18 |
+
class Net(nn.Module):
|
19 |
+
def __init__(self):
|
20 |
+
super(Net, self).__init__()
|
21 |
+
self.msk = U2NETP(3, 1)
|
22 |
+
self.DocTr = DocGeoNet()
|
23 |
+
|
24 |
+
def forward(self, x):
|
25 |
+
msk, _1,_2,_3,_4,_5,_6 = self.msk(x)
|
26 |
+
msk = (msk > 0.5).float()
|
27 |
+
x = msk * x
|
28 |
+
|
29 |
+
_, _, bm = self.DocTr(x)
|
30 |
+
bm = (2 * (bm / 255.) - 1) * 0.99
|
31 |
+
|
32 |
+
return bm
|
33 |
+
|
34 |
+
def reload_seg_model(model, path=""):
|
35 |
+
if not bool(path):
|
36 |
+
return model
|
37 |
+
else:
|
38 |
+
model_dict = model.state_dict()
|
39 |
+
pretrained_dict = torch.load(path, map_location='cpu')
|
40 |
+
pretrained_dict = {k[6:]: v for k, v in pretrained_dict.items() if k[6:] in model_dict}
|
41 |
+
model_dict.update(pretrained_dict)
|
42 |
+
model.load_state_dict(model_dict)
|
43 |
+
return model
|
44 |
+
|
45 |
+
def reload_rec_model(model, path=""):
|
46 |
+
if not bool(path):
|
47 |
+
return model
|
48 |
+
else:
|
49 |
+
model_dict = model.state_dict()
|
50 |
+
pretrained_dict = torch.load(path, map_location='cpu')
|
51 |
+
pretrained_dict = {k[7:]: v for k, v in pretrained_dict.items() if k[7:] in model_dict}
|
52 |
+
model_dict.update(pretrained_dict)
|
53 |
+
model.load_state_dict(model_dict)
|
54 |
+
return model
|
55 |
+
|
56 |
+
def rec(input_image):
|
57 |
+
seg_model_path = './model_pretrained/preprocess.pth'
|
58 |
+
rec_model_path = './model_pretrained/DocGeoNet.pth'
|
59 |
+
|
60 |
+
net = Net()
|
61 |
+
reload_rec_model(net.DocTr, rec_model_path)
|
62 |
+
reload_seg_model(net.msk, seg_model_path)
|
63 |
+
net.eval()
|
64 |
+
|
65 |
+
im_ori = np.array(input_image)[:, :, :3] / 255. # read image 0-255 to 0-1
|
66 |
+
h, w, _ = im_ori.shape
|
67 |
+
im = cv2.resize(im_ori, (256, 256))
|
68 |
+
im = im.transpose(2, 0, 1)
|
69 |
+
im = torch.from_numpy(im).float().unsqueeze(0)
|
70 |
+
|
71 |
+
with torch.no_grad():
|
72 |
+
bm = net(im)
|
73 |
+
bm = bm.cpu()
|
74 |
+
|
75 |
+
bm0 = cv2.resize(bm[0, 0].numpy(), (w, h)) # x flow
|
76 |
+
bm1 = cv2.resize(bm[0, 1].numpy(), (w, h)) # y flow
|
77 |
+
bm0 = cv2.blur(bm0, (3, 3))
|
78 |
+
bm1 = cv2.blur(bm1, (3, 3))
|
79 |
+
lbl = torch.from_numpy(np.stack([bm0, bm1], axis=2)).unsqueeze(0) # h * w * 2
|
80 |
+
out = F.grid_sample(torch.from_numpy(im_ori).permute(2, 0, 1).unsqueeze(0).float(), lbl, align_corners=True)
|
81 |
+
img_rec = ((out[0] * 255).permute(1, 2, 0).numpy())[:,:,::-1].astype(np.uint8)
|
82 |
+
|
83 |
+
# Convert from BGR to RGB
|
84 |
+
img_rec = cv2.cvtColor(img_rec, cv2.COLOR_BGR2RGB)
|
85 |
+
return Image.fromarray(img_rec)
|
86 |
+
|
87 |
+
|
88 |
+
demo_img_files = glob.glob('./distorted/*.[jJ][pP][gG]') + glob.glob('./distorted/*.[pP][nN][gG]')
|
89 |
+
|
90 |
+
# Gradio Interface
|
91 |
+
input_image = gr.inputs.Image()
|
92 |
+
output_image = gr.outputs.Image(type='pil')
|
93 |
+
|
94 |
+
iface = gr.Interface(fn=rec, inputs=input_image, outputs=output_image, title="DocGeoNet",examples=demo_img_files)
|
95 |
+
|
96 |
+
#iface.launch(server_port=8821, server_name="0.0.0.0")
|
97 |
+
iface.launch(server_port=8821, server_name="0.0.0.0")
|
distorted/42_2 copy.png
ADDED
distorted/63_2 copy.png
ADDED
extractor.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
|
6 |
+
class ResidualBlock(nn.Module):
|
7 |
+
def __init__(self, in_planes, planes, norm_fn='group', stride=1):
|
8 |
+
super(ResidualBlock, self).__init__()
|
9 |
+
|
10 |
+
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, padding=1, stride=stride)
|
11 |
+
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1)
|
12 |
+
self.relu = nn.ReLU(inplace=True)
|
13 |
+
|
14 |
+
num_groups = planes // 8
|
15 |
+
|
16 |
+
if norm_fn == 'group':
|
17 |
+
self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
|
18 |
+
self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
|
19 |
+
if not stride == 1:
|
20 |
+
self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
|
21 |
+
|
22 |
+
elif norm_fn == 'batch':
|
23 |
+
self.norm1 = nn.BatchNorm2d(planes)
|
24 |
+
self.norm2 = nn.BatchNorm2d(planes)
|
25 |
+
if not stride == 1:
|
26 |
+
self.norm3 = nn.BatchNorm2d(planes)
|
27 |
+
|
28 |
+
elif norm_fn == 'instance':
|
29 |
+
self.norm1 = nn.InstanceNorm2d(planes)
|
30 |
+
self.norm2 = nn.InstanceNorm2d(planes)
|
31 |
+
if not stride == 1:
|
32 |
+
self.norm3 = nn.InstanceNorm2d(planes)
|
33 |
+
|
34 |
+
elif norm_fn == 'none':
|
35 |
+
self.norm1 = nn.Sequential()
|
36 |
+
self.norm2 = nn.Sequential()
|
37 |
+
if not stride == 1:
|
38 |
+
self.norm3 = nn.Sequential()
|
39 |
+
|
40 |
+
if stride == 1:
|
41 |
+
self.downsample = None
|
42 |
+
|
43 |
+
else:
|
44 |
+
self.downsample = nn.Sequential(
|
45 |
+
nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm3)
|
46 |
+
|
47 |
+
|
48 |
+
def forward(self, x):
|
49 |
+
y = x
|
50 |
+
y = self.relu(self.norm1(self.conv1(y)))
|
51 |
+
y = self.relu(self.norm2(self.conv2(y)))
|
52 |
+
|
53 |
+
if self.downsample is not None:
|
54 |
+
x = self.downsample(x)
|
55 |
+
|
56 |
+
return self.relu(x+y)
|
57 |
+
|
58 |
+
|
59 |
+
class BasicEncoder(nn.Module):
|
60 |
+
def __init__(self, input_dim=128, output_dim=128, norm_fn='batch'):
|
61 |
+
super(BasicEncoder, self).__init__()
|
62 |
+
self.norm_fn = norm_fn
|
63 |
+
|
64 |
+
if self.norm_fn == 'group':
|
65 |
+
self.norm1 = nn.GroupNorm(num_groups=8, num_channels=64)
|
66 |
+
|
67 |
+
elif self.norm_fn == 'batch':
|
68 |
+
self.norm1 = nn.BatchNorm2d(64)
|
69 |
+
|
70 |
+
elif self.norm_fn == 'instance':
|
71 |
+
self.norm1 = nn.InstanceNorm2d(64)
|
72 |
+
|
73 |
+
elif self.norm_fn == 'none':
|
74 |
+
self.norm1 = nn.Sequential()
|
75 |
+
|
76 |
+
self.conv1 = nn.Conv2d(input_dim, 64, kernel_size=7, stride=2, padding=3)
|
77 |
+
self.relu1 = nn.ReLU(inplace=True)
|
78 |
+
|
79 |
+
self.in_planes = 64
|
80 |
+
self.layer1 = self._make_layer(64, stride=1)
|
81 |
+
self.layer2 = self._make_layer(128, stride=2)
|
82 |
+
self.layer3 = self._make_layer(192, stride=2)
|
83 |
+
|
84 |
+
# output convolution
|
85 |
+
self.conv2 = nn.Conv2d(192, output_dim, kernel_size=1)
|
86 |
+
|
87 |
+
for m in self.modules():
|
88 |
+
if isinstance(m, nn.Conv2d):
|
89 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
90 |
+
elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)):
|
91 |
+
if m.weight is not None:
|
92 |
+
nn.init.constant_(m.weight, 1)
|
93 |
+
if m.bias is not None:
|
94 |
+
nn.init.constant_(m.bias, 0)
|
95 |
+
|
96 |
+
def _make_layer(self, dim, stride=1):
|
97 |
+
layer1 = ResidualBlock(self.in_planes, dim, self.norm_fn, stride=stride)
|
98 |
+
layer2 = ResidualBlock(dim, dim, self.norm_fn, stride=1)
|
99 |
+
layers = (layer1, layer2)
|
100 |
+
|
101 |
+
self.in_planes = dim
|
102 |
+
return nn.Sequential(*layers)
|
103 |
+
|
104 |
+
def forward(self, x):
|
105 |
+
x = self.conv1(x)
|
106 |
+
x = self.norm1(x)
|
107 |
+
x = self.relu1(x)
|
108 |
+
|
109 |
+
x = self.layer1(x)
|
110 |
+
x = self.layer2(x)
|
111 |
+
x = self.layer3(x)
|
112 |
+
|
113 |
+
x = self.conv2(x)
|
114 |
+
|
115 |
+
return x
|
inference.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from model import DocGeoNet
|
2 |
+
from seg import U2NETP
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import skimage.io as io
|
8 |
+
import numpy as np
|
9 |
+
import cv2
|
10 |
+
import os
|
11 |
+
from PIL import Image
|
12 |
+
import argparse
|
13 |
+
import warnings
|
14 |
+
warnings.filterwarnings('ignore')
|
15 |
+
|
16 |
+
|
17 |
+
class Net(nn.Module):
|
18 |
+
def __init__(self, opt):
|
19 |
+
super(Net, self).__init__()
|
20 |
+
self.msk = U2NETP(3, 1)
|
21 |
+
self.DocTr = DocGeoNet()
|
22 |
+
|
23 |
+
def forward(self, x):
|
24 |
+
msk, _1,_2,_3,_4,_5,_6 = self.msk(x)
|
25 |
+
msk = (msk > 0.5).float()
|
26 |
+
x = msk * x
|
27 |
+
|
28 |
+
_, _, bm = self.DocTr(x)
|
29 |
+
bm = (2 * (bm / 255.) - 1) * 0.99
|
30 |
+
|
31 |
+
return bm
|
32 |
+
|
33 |
+
|
34 |
+
def reload_seg_model(model, path=""):
|
35 |
+
if not bool(path):
|
36 |
+
return model
|
37 |
+
else:
|
38 |
+
model_dict = model.state_dict()
|
39 |
+
pretrained_dict = torch.load(path, map_location='cpu')
|
40 |
+
print(len(pretrained_dict.keys()))
|
41 |
+
pretrained_dict = {k[6:]: v for k, v in pretrained_dict.items() if k[6:] in model_dict}
|
42 |
+
print(len(pretrained_dict.keys()))
|
43 |
+
model_dict.update(pretrained_dict)
|
44 |
+
model.load_state_dict(model_dict)
|
45 |
+
|
46 |
+
return model
|
47 |
+
|
48 |
+
|
49 |
+
def reload_rec_model(model, path=""):
|
50 |
+
if not bool(path):
|
51 |
+
return model
|
52 |
+
else:
|
53 |
+
model_dict = model.state_dict()
|
54 |
+
pretrained_dict = torch.load(path, map_location='cpu')
|
55 |
+
print(len(pretrained_dict.keys()))
|
56 |
+
pretrained_dict = {k[7:]: v for k, v in pretrained_dict.items() if k[7:] in model_dict}
|
57 |
+
print(len(pretrained_dict.keys()))
|
58 |
+
model_dict.update(pretrained_dict)
|
59 |
+
model.load_state_dict(model_dict)
|
60 |
+
|
61 |
+
return model
|
62 |
+
|
63 |
+
|
64 |
+
def rec(seg_model_path, rec_model_path, distorrted_path, save_path, opt):
|
65 |
+
print(torch.__version__)
|
66 |
+
|
67 |
+
# distorted images list
|
68 |
+
img_list = sorted(os.listdir(distorrted_path))
|
69 |
+
|
70 |
+
# creat save path for rectified images
|
71 |
+
if not os.path.exists(save_path):
|
72 |
+
os.makedirs(save_path)
|
73 |
+
|
74 |
+
net = Net(opt)#.cuda()
|
75 |
+
print(get_parameter_number(net))
|
76 |
+
|
77 |
+
# reload rec model
|
78 |
+
reload_rec_model(net.DocTr, rec_model_path)
|
79 |
+
reload_seg_model(net.msk, opt.seg_model_path)
|
80 |
+
|
81 |
+
net.eval()
|
82 |
+
|
83 |
+
for img_path in img_list:
|
84 |
+
name = img_path.split('.')[-2] # image name
|
85 |
+
img_path = distorrted_path + img_path # image path
|
86 |
+
|
87 |
+
im_ori = np.array(Image.open(img_path))[:, :, :3] / 255. # read image 0-255 to 0-1
|
88 |
+
h, w, _ = im_ori.shape
|
89 |
+
im = cv2.resize(im_ori, (256, 256))
|
90 |
+
im = im.transpose(2, 0, 1)
|
91 |
+
im = torch.from_numpy(im).float().unsqueeze(0)
|
92 |
+
|
93 |
+
with torch.no_grad():
|
94 |
+
bm = net(im)
|
95 |
+
bm = bm.cpu()
|
96 |
+
|
97 |
+
# save rectified image
|
98 |
+
bm0 = cv2.resize(bm[0, 0].numpy(), (w, h)) # x flow
|
99 |
+
bm1 = cv2.resize(bm[0, 1].numpy(), (w, h)) # y flow
|
100 |
+
bm0 = cv2.blur(bm0, (3, 3))
|
101 |
+
bm1 = cv2.blur(bm1, (3, 3))
|
102 |
+
lbl = torch.from_numpy(np.stack([bm0, bm1], axis=2)).unsqueeze(0) # h * w * 2
|
103 |
+
out = F.grid_sample(torch.from_numpy(im_ori).permute(2, 0, 1).unsqueeze(0).float(), lbl, align_corners=True)
|
104 |
+
cv2.imwrite(save_path + name + '_rec' + '.png', ((out[0] * 255).permute(1, 2, 0).numpy())[:,:,::-1].astype(np.uint8))
|
105 |
+
|
106 |
+
|
107 |
+
def get_parameter_number(net):
|
108 |
+
total_num = sum(p.numel() for p in net.parameters())
|
109 |
+
trainable_num = sum(p.numel() for p in net.parameters() if p.requires_grad)
|
110 |
+
return {'Total': total_num, 'Trainable': trainable_num}
|
111 |
+
|
112 |
+
|
113 |
+
def main():
|
114 |
+
parser = argparse.ArgumentParser()
|
115 |
+
parser.add_argument('--seg_model_path', default='./model_pretrained/preprocess.pth')
|
116 |
+
parser.add_argument('--rec_model_path', default='./model_pretrained/DocGeoNet.pth')
|
117 |
+
parser.add_argument('--distorrted_path', default='./distorted/')
|
118 |
+
parser.add_argument('--save_path', default='./rec/')
|
119 |
+
opt = parser.parse_args()
|
120 |
+
|
121 |
+
rec(seg_model_path=opt.seg_model_path,
|
122 |
+
rec_model_path=opt.rec_model_path,
|
123 |
+
distorrted_path=opt.distorrted_path,
|
124 |
+
save_path=opt.save_path,
|
125 |
+
opt=opt)
|
126 |
+
|
127 |
+
if __name__ == "__main__":
|
128 |
+
main()
|
model.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from extractor import BasicEncoder
|
2 |
+
from position_encoding import build_position_encoding
|
3 |
+
from unet import U_Net_mini
|
4 |
+
|
5 |
+
import argparse
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
from torch import nn, Tensor
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import copy
|
11 |
+
from typing import Optional
|
12 |
+
|
13 |
+
|
14 |
+
class attnLayer(nn.Module):
|
15 |
+
def __init__(self, d_model, nhead=8, dim_feedforward=2048, dropout=0.1,
|
16 |
+
activation="relu", normalize_before=False):
|
17 |
+
super().__init__()
|
18 |
+
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
19 |
+
self.multihead_attn_list = nn.ModuleList(
|
20 |
+
[copy.deepcopy(nn.MultiheadAttention(d_model, nhead, dropout=dropout)) for i in range(2)])
|
21 |
+
# Implementation of Feedforward model
|
22 |
+
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
23 |
+
self.dropout = nn.Dropout(dropout)
|
24 |
+
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
25 |
+
|
26 |
+
self.norm1 = nn.LayerNorm(d_model)
|
27 |
+
self.norm2_list = nn.ModuleList([copy.deepcopy(nn.LayerNorm(d_model)) for i in range(2)])
|
28 |
+
|
29 |
+
self.norm3 = nn.LayerNorm(d_model)
|
30 |
+
self.dropout1 = nn.Dropout(dropout)
|
31 |
+
self.dropout2_list = nn.ModuleList([copy.deepcopy(nn.Dropout(dropout)) for i in range(2)])
|
32 |
+
self.dropout3 = nn.Dropout(dropout)
|
33 |
+
|
34 |
+
self.activation = _get_activation_fn(activation)
|
35 |
+
self.normalize_before = normalize_before
|
36 |
+
|
37 |
+
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
38 |
+
return tensor if pos is None else tensor + pos
|
39 |
+
|
40 |
+
def forward_post(self, tgt, memory_list, tgt_mask=None, memory_mask=None,
|
41 |
+
tgt_key_padding_mask=None, memory_key_padding_mask=None,
|
42 |
+
pos=None, memory_pos=None):
|
43 |
+
q = k = self.with_pos_embed(tgt, pos)
|
44 |
+
tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask,
|
45 |
+
key_padding_mask=tgt_key_padding_mask)[0]
|
46 |
+
tgt = tgt + self.dropout1(tgt2)
|
47 |
+
tgt = self.norm1(tgt)
|
48 |
+
for memory, multihead_attn, norm2, dropout2, m_pos in zip(memory_list, self.multihead_attn_list,
|
49 |
+
self.norm2_list, self.dropout2_list, memory_pos):
|
50 |
+
tgt2 = multihead_attn(query=self.with_pos_embed(tgt, pos),
|
51 |
+
key=self.with_pos_embed(memory, m_pos),
|
52 |
+
value=memory, attn_mask=memory_mask,
|
53 |
+
key_padding_mask=memory_key_padding_mask)[0]
|
54 |
+
tgt = tgt + dropout2(tgt2)
|
55 |
+
tgt = norm2(tgt)
|
56 |
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
|
57 |
+
tgt = tgt + self.dropout3(tgt2)
|
58 |
+
tgt = self.norm3(tgt)
|
59 |
+
return tgt
|
60 |
+
|
61 |
+
def forward_pre(self, tgt, memory, tgt_mask=None, memory_mask=None,
|
62 |
+
tgt_key_padding_mask=None, memory_key_padding_mask=None,
|
63 |
+
pos=None, memory_pos=None):
|
64 |
+
tgt2 = self.norm1(tgt)
|
65 |
+
q = k = self.with_pos_embed(tgt2, pos)
|
66 |
+
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
|
67 |
+
key_padding_mask=tgt_key_padding_mask)[0]
|
68 |
+
tgt = tgt + self.dropout1(tgt2)
|
69 |
+
tgt2 = self.norm2(tgt)
|
70 |
+
tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt2, pos),
|
71 |
+
key=self.with_pos_embed(memory, memory_pos),
|
72 |
+
value=memory, attn_mask=memory_mask,
|
73 |
+
key_padding_mask=memory_key_padding_mask)[0]
|
74 |
+
tgt = tgt + self.dropout2(tgt2)
|
75 |
+
tgt2 = self.norm3(tgt)
|
76 |
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
|
77 |
+
tgt = tgt + self.dropout3(tgt2)
|
78 |
+
return tgt
|
79 |
+
|
80 |
+
def forward(self, tgt, memory_list, tgt_mask=None, memory_mask=None,
|
81 |
+
tgt_key_padding_mask=None, memory_key_padding_mask=None,
|
82 |
+
pos=None, memory_pos=None):
|
83 |
+
if self.normalize_before:
|
84 |
+
return self.forward_pre(tgt, memory_list, tgt_mask, memory_mask,
|
85 |
+
tgt_key_padding_mask, memory_key_padding_mask, pos, memory_pos)
|
86 |
+
return self.forward_post(tgt, memory_list, tgt_mask, memory_mask,
|
87 |
+
tgt_key_padding_mask, memory_key_padding_mask, pos, memory_pos)
|
88 |
+
|
89 |
+
|
90 |
+
def _get_clones(module, N):
|
91 |
+
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
92 |
+
|
93 |
+
|
94 |
+
def _get_activation_fn(activation):
|
95 |
+
"""Return an activation function given a string"""
|
96 |
+
if activation == "relu":
|
97 |
+
return F.relu
|
98 |
+
if activation == "gelu":
|
99 |
+
return F.gelu
|
100 |
+
if activation == "glu":
|
101 |
+
return F.glu
|
102 |
+
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
|
103 |
+
|
104 |
+
|
105 |
+
class TransDecoder(nn.Module):
|
106 |
+
def __init__(self, num_attn_layers, hidden_dim=128):
|
107 |
+
super(TransDecoder, self).__init__()
|
108 |
+
attn_layer = attnLayer(hidden_dim)
|
109 |
+
self.layers = _get_clones(attn_layer, num_attn_layers)
|
110 |
+
self.position_embedding = build_position_encoding(hidden_dim)
|
111 |
+
|
112 |
+
def forward(self, imgf, query_embed):
|
113 |
+
pos = self.position_embedding(
|
114 |
+
torch.ones(imgf.shape[0], imgf.shape[2], imgf.shape[3]).bool()) # torch.Size([1, 128, 36, 36])
|
115 |
+
|
116 |
+
bs, c, h, w = imgf.shape
|
117 |
+
imgf = imgf.flatten(2).permute(2, 0, 1) # torch.Size([1296, 1, 256])
|
118 |
+
query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1)
|
119 |
+
pos = pos.flatten(2).permute(2, 0, 1) # torch.Size([1296, 1, 256])
|
120 |
+
|
121 |
+
for layer in self.layers:
|
122 |
+
query_embed = layer(query_embed, [imgf], pos=pos, memory_pos=[pos, pos])
|
123 |
+
query_embed = query_embed.permute(1, 2, 0).reshape(bs, c, h, w)
|
124 |
+
|
125 |
+
return query_embed
|
126 |
+
|
127 |
+
|
128 |
+
class TransEncoder(nn.Module):
|
129 |
+
def __init__(self, num_attn_layers, hidden_dim=128):
|
130 |
+
super(TransEncoder, self).__init__()
|
131 |
+
attn_layer = attnLayer(hidden_dim)
|
132 |
+
self.layers = _get_clones(attn_layer, num_attn_layers)
|
133 |
+
self.position_embedding = build_position_encoding(hidden_dim)
|
134 |
+
|
135 |
+
def forward(self, imgf):
|
136 |
+
pos = self.position_embedding(
|
137 |
+
torch.ones(imgf.shape[0], imgf.shape[2], imgf.shape[3]).bool()) # torch.Size([1, 128, 36, 36])
|
138 |
+
bs, c, h, w = imgf.shape
|
139 |
+
imgf = imgf.flatten(2).permute(2, 0, 1)
|
140 |
+
pos = pos.flatten(2).permute(2, 0, 1)
|
141 |
+
|
142 |
+
for layer in self.layers:
|
143 |
+
imgf = layer(imgf, [imgf], pos=pos, memory_pos=[pos, pos])
|
144 |
+
imgf = imgf.permute(1, 2, 0).reshape(bs, c, h, w)
|
145 |
+
|
146 |
+
return imgf
|
147 |
+
|
148 |
+
|
149 |
+
class FlowHead(nn.Module):
|
150 |
+
def __init__(self, input_dim=128, hidden_dim=256, out_cha=2):
|
151 |
+
super(FlowHead, self).__init__()
|
152 |
+
self.conv1 = nn.Conv2d(input_dim, hidden_dim, 3, padding=1)
|
153 |
+
self.conv2 = nn.Conv2d(hidden_dim, out_cha, 3, padding=1)
|
154 |
+
self.relu = nn.ReLU(inplace=True)
|
155 |
+
|
156 |
+
def forward(self, x):
|
157 |
+
return self.conv2(self.relu(self.conv1(x)))
|
158 |
+
|
159 |
+
|
160 |
+
class UpdateBlock(nn.Module):
|
161 |
+
def __init__(self, hidden_dim=128):
|
162 |
+
super(UpdateBlock, self).__init__()
|
163 |
+
self.flow_head = FlowHead(hidden_dim, hidden_dim=256)
|
164 |
+
self.mask = nn.Sequential(
|
165 |
+
nn.Conv2d(hidden_dim, 256, 3, padding=1),
|
166 |
+
nn.ReLU(inplace=True),
|
167 |
+
nn.Conv2d(256, 64 * 9, 1, padding=0))
|
168 |
+
|
169 |
+
def forward(self, imgf, coords1):
|
170 |
+
mask = .25 * self.mask(imgf) # scale mask to balence gradients
|
171 |
+
dflow = self.flow_head(imgf)
|
172 |
+
coords1 = coords1 + dflow
|
173 |
+
|
174 |
+
return mask, coords1
|
175 |
+
|
176 |
+
|
177 |
+
def coords_grid(batch, ht, wd):
|
178 |
+
coords = torch.meshgrid(torch.arange(ht), torch.arange(wd))
|
179 |
+
coords = torch.stack(coords[::-1], dim=0).float()
|
180 |
+
return coords[None].repeat(batch, 1, 1, 1)
|
181 |
+
|
182 |
+
|
183 |
+
def upflow8(flow, mode='bilinear'):
|
184 |
+
new_size = (8 * flow.shape[2], 8 * flow.shape[3])
|
185 |
+
return 8 * F.interpolate(flow, size=new_size, mode=mode, align_corners=True)
|
186 |
+
|
187 |
+
|
188 |
+
class Up_block(nn.Module):
|
189 |
+
def __init__(self, hidden_dim=128, out_cha=3):
|
190 |
+
super(Up_block, self).__init__()
|
191 |
+
self.flow_head = FlowHead(hidden_dim, hidden_dim=256, out_cha=out_cha)
|
192 |
+
self.acf = nn.Hardtanh(0, 1)
|
193 |
+
|
194 |
+
def forward(self, x):
|
195 |
+
x = self.flow_head(x)
|
196 |
+
x = upflow8(x)
|
197 |
+
x = self.acf(x)
|
198 |
+
return x
|
199 |
+
|
200 |
+
|
201 |
+
class DocGeoNet(nn.Module):
|
202 |
+
def __init__(self):
|
203 |
+
super(DocGeoNet, self).__init__()
|
204 |
+
|
205 |
+
self.hidden_dim = hdim = 128
|
206 |
+
self.imcnn = BasicEncoder(input_dim=3, output_dim=hdim, norm_fn='instance')
|
207 |
+
|
208 |
+
# uv
|
209 |
+
self.wc_encoder = TransEncoder(4, hidden_dim=hdim)
|
210 |
+
# uv tail
|
211 |
+
self.Up_block_wc = nn.Sequential(TransEncoder(2, hidden_dim=hdim),
|
212 |
+
Up_block(self.hidden_dim))
|
213 |
+
|
214 |
+
# text
|
215 |
+
self.text_encoder = U_Net_mini(3, 1)
|
216 |
+
self.textcnn = nn.Conv2d(128, 64, 3, 2, 1) # BasicEncoder(input_dim=32, output_dim=64, norm_fn='instance')
|
217 |
+
|
218 |
+
# 6
|
219 |
+
self.bm_encoder = TransEncoder(6, hidden_dim=hdim + 64)
|
220 |
+
|
221 |
+
# bm tail
|
222 |
+
self.update_block = UpdateBlock(self.hidden_dim + 64)
|
223 |
+
|
224 |
+
def initialize_flow(self, img):
|
225 |
+
N, C, H, W = img.shape
|
226 |
+
coodslar = coords_grid(N, H, W).to(img.device)
|
227 |
+
coords0 = coords_grid(N, H // 8, W // 8).to(img.device)
|
228 |
+
coords1 = coords_grid(N, H // 8, W // 8).to(img.device)
|
229 |
+
|
230 |
+
return coodslar, coords0, coords1
|
231 |
+
|
232 |
+
def upsample_flow(self, flow, mask):
|
233 |
+
N, _, H, W = flow.shape
|
234 |
+
mask = mask.view(N, 1, 9, 8, 8, H, W)
|
235 |
+
mask = torch.softmax(mask, dim=2)
|
236 |
+
|
237 |
+
up_flow = F.unfold(8 * flow, [3, 3], padding=1)
|
238 |
+
up_flow = up_flow.view(N, 2, 9, 1, 1, H, W)
|
239 |
+
|
240 |
+
up_flow = torch.sum(mask * up_flow, dim=2)
|
241 |
+
up_flow = up_flow.permute(0, 1, 4, 2, 5, 3)
|
242 |
+
|
243 |
+
return up_flow.reshape(N, 2, 8 * H, 8 * W)
|
244 |
+
|
245 |
+
def forward(self, image1):
|
246 |
+
# wc
|
247 |
+
imfmap = self.imcnn(image1)
|
248 |
+
imfmap = torch.relu(imfmap)
|
249 |
+
wcfea = self.wc_encoder(imfmap)
|
250 |
+
wc_pred = self.Up_block_wc(wcfea)
|
251 |
+
|
252 |
+
# text
|
253 |
+
d4, text_pred = self.text_encoder(image1)
|
254 |
+
textfea = self.textcnn(d4)
|
255 |
+
fmap = torch.cat((wcfea, textfea), 1)
|
256 |
+
|
257 |
+
# bm encoder
|
258 |
+
fmap = self.bm_encoder(fmap)
|
259 |
+
|
260 |
+
# upsample
|
261 |
+
coodslar, coords0, coords1 = self.initialize_flow(image1)
|
262 |
+
coords1 = coords1.detach()
|
263 |
+
mask, coords1 = self.update_block(fmap, coords1)
|
264 |
+
flow_up = self.upsample_flow(coords1 - coords0, mask)
|
265 |
+
bm_up = coodslar + flow_up
|
266 |
+
|
267 |
+
return wc_pred, text_pred, bm_up
|
model_pretrained/DocGeoNet.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:27d7a379a92b4fe5bb347d26ef37da7c9cffbfefb09fcd8705bc9beae26e6146
|
3 |
+
size 95196536
|
model_pretrained/preprocess.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb79fdec55a5ed435dc74d8112aa9285d8213bae475022f711c709744fb19dd4
|
3 |
+
size 4715923
|
position_encoding.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
2 |
+
"""
|
3 |
+
Various positional encodings for the transformer.
|
4 |
+
"""
|
5 |
+
import math
|
6 |
+
import torch
|
7 |
+
from torch import nn
|
8 |
+
from typing import List
|
9 |
+
from typing import Optional
|
10 |
+
from torch import Tensor
|
11 |
+
|
12 |
+
|
13 |
+
class NestedTensor(object):
|
14 |
+
def __init__(self, tensors, mask: Optional[Tensor]):
|
15 |
+
self.tensors = tensors
|
16 |
+
self.mask = mask
|
17 |
+
|
18 |
+
def to(self, device):
|
19 |
+
# type: (Device) -> NestedTensor # noqa
|
20 |
+
cast_tensor = self.tensors.to(device)
|
21 |
+
mask = self.mask
|
22 |
+
if mask is not None:
|
23 |
+
assert mask is not None
|
24 |
+
cast_mask = mask.to(device)
|
25 |
+
else:
|
26 |
+
cast_mask = None
|
27 |
+
return NestedTensor(cast_tensor, cast_mask)
|
28 |
+
|
29 |
+
def decompose(self):
|
30 |
+
return self.tensors, self.mask
|
31 |
+
|
32 |
+
def __repr__(self):
|
33 |
+
return str(self.tensors)
|
34 |
+
|
35 |
+
|
36 |
+
class PositionEmbeddingSine(nn.Module):
|
37 |
+
"""
|
38 |
+
This is a more standard version of the position embedding, very similar to the one
|
39 |
+
used by the Attention is all you need paper, generalized to work on images.
|
40 |
+
"""
|
41 |
+
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
|
42 |
+
super().__init__()
|
43 |
+
self.num_pos_feats = num_pos_feats
|
44 |
+
self.temperature = temperature
|
45 |
+
self.normalize = normalize
|
46 |
+
if scale is not None and normalize is False:
|
47 |
+
raise ValueError("normalize should be True if scale is passed")
|
48 |
+
if scale is None:
|
49 |
+
scale = 2 * math.pi
|
50 |
+
self.scale = scale
|
51 |
+
|
52 |
+
def forward(self, mask):
|
53 |
+
assert mask is not None
|
54 |
+
y_embed = mask.cumsum(1, dtype=torch.float32)
|
55 |
+
x_embed = mask.cumsum(2, dtype=torch.float32)
|
56 |
+
if self.normalize:
|
57 |
+
eps = 1e-6
|
58 |
+
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
|
59 |
+
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
|
60 |
+
|
61 |
+
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32)#.cuda()
|
62 |
+
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
63 |
+
|
64 |
+
pos_x = x_embed[:, :, :, None] / dim_t
|
65 |
+
pos_y = y_embed[:, :, :, None] / dim_t
|
66 |
+
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
|
67 |
+
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
|
68 |
+
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
69 |
+
# print(pos.shape)
|
70 |
+
return pos
|
71 |
+
|
72 |
+
|
73 |
+
class PositionEmbeddingLearned(nn.Module):
|
74 |
+
"""
|
75 |
+
Absolute pos embedding, learned.
|
76 |
+
"""
|
77 |
+
def __init__(self, num_pos_feats=256):
|
78 |
+
super().__init__()
|
79 |
+
self.row_embed = nn.Embedding(50, num_pos_feats)
|
80 |
+
self.col_embed = nn.Embedding(50, num_pos_feats)
|
81 |
+
self.reset_parameters()
|
82 |
+
|
83 |
+
def reset_parameters(self):
|
84 |
+
nn.init.uniform_(self.row_embed.weight)
|
85 |
+
nn.init.uniform_(self.col_embed.weight)
|
86 |
+
|
87 |
+
def forward(self, tensor_list: NestedTensor):
|
88 |
+
x = tensor_list.tensors
|
89 |
+
h, w = x.shape[-2:]
|
90 |
+
i = torch.arange(w, device=x.device)
|
91 |
+
j = torch.arange(h, device=x.device)
|
92 |
+
x_emb = self.col_embed(i)
|
93 |
+
y_emb = self.row_embed(j)
|
94 |
+
pos = torch.cat([
|
95 |
+
x_emb.unsqueeze(0).repeat(h, 1, 1),
|
96 |
+
y_emb.unsqueeze(1).repeat(1, w, 1),
|
97 |
+
], dim=-1).permute(2, 0, 1).unsqueeze(0).repeat(x.shape[0], 1, 1, 1)
|
98 |
+
return pos
|
99 |
+
|
100 |
+
def build_position_encoding(hidden_dim=512, position_embedding='sine'):
|
101 |
+
N_steps = hidden_dim // 2
|
102 |
+
if position_embedding in ('v2', 'sine'):
|
103 |
+
position_embedding = PositionEmbeddingSine(N_steps, normalize=True)
|
104 |
+
elif position_embedding in ('v3', 'learned'):
|
105 |
+
position_embedding = PositionEmbeddingLearned(N_steps)
|
106 |
+
else:
|
107 |
+
raise ValueError(f"not supported {position_embedding}")
|
108 |
+
|
109 |
+
return position_embedding
|
110 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
opencv_python
|
3 |
+
Pillow
|
4 |
+
scikit_image
|
5 |
+
torch
|
6 |
+
torchvision
|
7 |
+
gradio
|
seg.py
ADDED
@@ -0,0 +1,567 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torchvision import models
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
|
8 |
+
class sobel_net(nn.Module):
|
9 |
+
def __init__(self):
|
10 |
+
super().__init__()
|
11 |
+
self.conv_opx = nn.Conv2d(1, 1, 3, bias=False)
|
12 |
+
self.conv_opy = nn.Conv2d(1, 1, 3, bias=False)
|
13 |
+
sobel_kernelx = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype='float32').reshape((1, 1, 3, 3))
|
14 |
+
sobel_kernely = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], dtype='float32').reshape((1, 1, 3, 3))
|
15 |
+
self.conv_opx.weight.data = torch.from_numpy(sobel_kernelx)
|
16 |
+
self.conv_opy.weight.data = torch.from_numpy(sobel_kernely)
|
17 |
+
|
18 |
+
for p in self.parameters():
|
19 |
+
p.requires_grad = False
|
20 |
+
|
21 |
+
def forward(self, im): # input rgb
|
22 |
+
x = (0.299 * im[:, 0, :, :] + 0.587 * im[:, 1, :, :] + 0.114 * im[:, 2, :, :]).unsqueeze(1) # rgb2gray
|
23 |
+
gradx = self.conv_opx(x)
|
24 |
+
grady = self.conv_opy(x)
|
25 |
+
|
26 |
+
x = (gradx ** 2 + grady ** 2) ** 0.5
|
27 |
+
x = (x - x.min()) / (x.max() - x.min())
|
28 |
+
x = F.pad(x, (1, 1, 1, 1))
|
29 |
+
|
30 |
+
x = torch.cat([im, x], dim=1)
|
31 |
+
return x
|
32 |
+
|
33 |
+
|
34 |
+
class REBNCONV(nn.Module):
|
35 |
+
def __init__(self, in_ch=3, out_ch=3, dirate=1):
|
36 |
+
super(REBNCONV, self).__init__()
|
37 |
+
|
38 |
+
self.conv_s1 = nn.Conv2d(in_ch, out_ch, 3, padding=1 * dirate, dilation=1 * dirate)
|
39 |
+
self.bn_s1 = nn.BatchNorm2d(out_ch)
|
40 |
+
self.relu_s1 = nn.ReLU(inplace=True)
|
41 |
+
|
42 |
+
def forward(self, x):
|
43 |
+
hx = x
|
44 |
+
xout = self.relu_s1(self.bn_s1(self.conv_s1(hx)))
|
45 |
+
|
46 |
+
return xout
|
47 |
+
|
48 |
+
|
49 |
+
## upsample tensor 'src' to have the same spatial size with tensor 'tar'
|
50 |
+
def _upsample_like(src, tar):
|
51 |
+
src = F.interpolate(src, size=tar.shape[2:], mode='bilinear', align_corners=False)
|
52 |
+
|
53 |
+
return src
|
54 |
+
|
55 |
+
|
56 |
+
### RSU-7 ###
|
57 |
+
class RSU7(nn.Module): # UNet07DRES(nn.Module):
|
58 |
+
|
59 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
60 |
+
super(RSU7, self).__init__()
|
61 |
+
|
62 |
+
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
63 |
+
|
64 |
+
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
65 |
+
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
66 |
+
|
67 |
+
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
68 |
+
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
69 |
+
|
70 |
+
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
71 |
+
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
72 |
+
|
73 |
+
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
74 |
+
self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
75 |
+
|
76 |
+
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
77 |
+
self.pool5 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
78 |
+
|
79 |
+
self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
80 |
+
|
81 |
+
self.rebnconv7 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
82 |
+
|
83 |
+
self.rebnconv6d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
84 |
+
self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
85 |
+
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
86 |
+
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
87 |
+
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
88 |
+
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
89 |
+
|
90 |
+
def forward(self, x):
|
91 |
+
hx = x
|
92 |
+
hxin = self.rebnconvin(hx)
|
93 |
+
|
94 |
+
hx1 = self.rebnconv1(hxin)
|
95 |
+
hx = self.pool1(hx1)
|
96 |
+
|
97 |
+
hx2 = self.rebnconv2(hx)
|
98 |
+
hx = self.pool2(hx2)
|
99 |
+
|
100 |
+
hx3 = self.rebnconv3(hx)
|
101 |
+
hx = self.pool3(hx3)
|
102 |
+
|
103 |
+
hx4 = self.rebnconv4(hx)
|
104 |
+
hx = self.pool4(hx4)
|
105 |
+
|
106 |
+
hx5 = self.rebnconv5(hx)
|
107 |
+
hx = self.pool5(hx5)
|
108 |
+
|
109 |
+
hx6 = self.rebnconv6(hx)
|
110 |
+
|
111 |
+
hx7 = self.rebnconv7(hx6)
|
112 |
+
|
113 |
+
hx6d = self.rebnconv6d(torch.cat((hx7, hx6), 1))
|
114 |
+
hx6dup = _upsample_like(hx6d, hx5)
|
115 |
+
|
116 |
+
hx5d = self.rebnconv5d(torch.cat((hx6dup, hx5), 1))
|
117 |
+
hx5dup = _upsample_like(hx5d, hx4)
|
118 |
+
|
119 |
+
hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1))
|
120 |
+
hx4dup = _upsample_like(hx4d, hx3)
|
121 |
+
|
122 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1))
|
123 |
+
hx3dup = _upsample_like(hx3d, hx2)
|
124 |
+
|
125 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
126 |
+
hx2dup = _upsample_like(hx2d, hx1)
|
127 |
+
|
128 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
129 |
+
|
130 |
+
return hx1d + hxin
|
131 |
+
|
132 |
+
|
133 |
+
### RSU-6 ###
|
134 |
+
class RSU6(nn.Module): # UNet06DRES(nn.Module):
|
135 |
+
|
136 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
137 |
+
super(RSU6, self).__init__()
|
138 |
+
|
139 |
+
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
140 |
+
|
141 |
+
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
142 |
+
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
143 |
+
|
144 |
+
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
145 |
+
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
146 |
+
|
147 |
+
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
148 |
+
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
149 |
+
|
150 |
+
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
151 |
+
self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
152 |
+
|
153 |
+
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
154 |
+
|
155 |
+
self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
156 |
+
|
157 |
+
self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
158 |
+
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
159 |
+
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
160 |
+
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
161 |
+
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
162 |
+
|
163 |
+
def forward(self, x):
|
164 |
+
hx = x
|
165 |
+
|
166 |
+
hxin = self.rebnconvin(hx)
|
167 |
+
|
168 |
+
hx1 = self.rebnconv1(hxin)
|
169 |
+
hx = self.pool1(hx1)
|
170 |
+
|
171 |
+
hx2 = self.rebnconv2(hx)
|
172 |
+
hx = self.pool2(hx2)
|
173 |
+
|
174 |
+
hx3 = self.rebnconv3(hx)
|
175 |
+
hx = self.pool3(hx3)
|
176 |
+
|
177 |
+
hx4 = self.rebnconv4(hx)
|
178 |
+
hx = self.pool4(hx4)
|
179 |
+
|
180 |
+
hx5 = self.rebnconv5(hx)
|
181 |
+
|
182 |
+
hx6 = self.rebnconv6(hx5)
|
183 |
+
|
184 |
+
hx5d = self.rebnconv5d(torch.cat((hx6, hx5), 1))
|
185 |
+
hx5dup = _upsample_like(hx5d, hx4)
|
186 |
+
|
187 |
+
hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1))
|
188 |
+
hx4dup = _upsample_like(hx4d, hx3)
|
189 |
+
|
190 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1))
|
191 |
+
hx3dup = _upsample_like(hx3d, hx2)
|
192 |
+
|
193 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
194 |
+
hx2dup = _upsample_like(hx2d, hx1)
|
195 |
+
|
196 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
197 |
+
|
198 |
+
return hx1d + hxin
|
199 |
+
|
200 |
+
|
201 |
+
### RSU-5 ###
|
202 |
+
class RSU5(nn.Module): # UNet05DRES(nn.Module):
|
203 |
+
|
204 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
205 |
+
super(RSU5, self).__init__()
|
206 |
+
|
207 |
+
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
208 |
+
|
209 |
+
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
210 |
+
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
211 |
+
|
212 |
+
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
213 |
+
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
214 |
+
|
215 |
+
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
216 |
+
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
217 |
+
|
218 |
+
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
219 |
+
|
220 |
+
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
221 |
+
|
222 |
+
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
223 |
+
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
224 |
+
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
225 |
+
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
226 |
+
|
227 |
+
def forward(self, x):
|
228 |
+
hx = x
|
229 |
+
|
230 |
+
hxin = self.rebnconvin(hx)
|
231 |
+
|
232 |
+
hx1 = self.rebnconv1(hxin)
|
233 |
+
hx = self.pool1(hx1)
|
234 |
+
|
235 |
+
hx2 = self.rebnconv2(hx)
|
236 |
+
hx = self.pool2(hx2)
|
237 |
+
|
238 |
+
hx3 = self.rebnconv3(hx)
|
239 |
+
hx = self.pool3(hx3)
|
240 |
+
|
241 |
+
hx4 = self.rebnconv4(hx)
|
242 |
+
|
243 |
+
hx5 = self.rebnconv5(hx4)
|
244 |
+
|
245 |
+
hx4d = self.rebnconv4d(torch.cat((hx5, hx4), 1))
|
246 |
+
hx4dup = _upsample_like(hx4d, hx3)
|
247 |
+
|
248 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1))
|
249 |
+
hx3dup = _upsample_like(hx3d, hx2)
|
250 |
+
|
251 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
252 |
+
hx2dup = _upsample_like(hx2d, hx1)
|
253 |
+
|
254 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
255 |
+
|
256 |
+
return hx1d + hxin
|
257 |
+
|
258 |
+
|
259 |
+
### RSU-4 ###
|
260 |
+
class RSU4(nn.Module): # UNet04DRES(nn.Module):
|
261 |
+
|
262 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
263 |
+
super(RSU4, self).__init__()
|
264 |
+
|
265 |
+
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
266 |
+
|
267 |
+
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
268 |
+
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
269 |
+
|
270 |
+
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
271 |
+
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
272 |
+
|
273 |
+
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
274 |
+
|
275 |
+
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
276 |
+
|
277 |
+
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
278 |
+
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
279 |
+
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
280 |
+
|
281 |
+
def forward(self, x):
|
282 |
+
hx = x
|
283 |
+
|
284 |
+
hxin = self.rebnconvin(hx)
|
285 |
+
|
286 |
+
hx1 = self.rebnconv1(hxin)
|
287 |
+
hx = self.pool1(hx1)
|
288 |
+
|
289 |
+
hx2 = self.rebnconv2(hx)
|
290 |
+
hx = self.pool2(hx2)
|
291 |
+
|
292 |
+
hx3 = self.rebnconv3(hx)
|
293 |
+
|
294 |
+
hx4 = self.rebnconv4(hx3)
|
295 |
+
|
296 |
+
hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1))
|
297 |
+
hx3dup = _upsample_like(hx3d, hx2)
|
298 |
+
|
299 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
300 |
+
hx2dup = _upsample_like(hx2d, hx1)
|
301 |
+
|
302 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
303 |
+
|
304 |
+
return hx1d + hxin
|
305 |
+
|
306 |
+
|
307 |
+
### RSU-4F ###
|
308 |
+
class RSU4F(nn.Module): # UNet04FRES(nn.Module):
|
309 |
+
|
310 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
311 |
+
super(RSU4F, self).__init__()
|
312 |
+
|
313 |
+
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
314 |
+
|
315 |
+
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
316 |
+
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
317 |
+
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=4)
|
318 |
+
|
319 |
+
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=8)
|
320 |
+
|
321 |
+
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=4)
|
322 |
+
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=2)
|
323 |
+
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
324 |
+
|
325 |
+
def forward(self, x):
|
326 |
+
hx = x
|
327 |
+
|
328 |
+
hxin = self.rebnconvin(hx)
|
329 |
+
|
330 |
+
hx1 = self.rebnconv1(hxin)
|
331 |
+
hx2 = self.rebnconv2(hx1)
|
332 |
+
hx3 = self.rebnconv3(hx2)
|
333 |
+
|
334 |
+
hx4 = self.rebnconv4(hx3)
|
335 |
+
|
336 |
+
hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1))
|
337 |
+
hx2d = self.rebnconv2d(torch.cat((hx3d, hx2), 1))
|
338 |
+
hx1d = self.rebnconv1d(torch.cat((hx2d, hx1), 1))
|
339 |
+
|
340 |
+
return hx1d + hxin
|
341 |
+
|
342 |
+
|
343 |
+
##### U^2-Net ####
|
344 |
+
class U2NET(nn.Module):
|
345 |
+
|
346 |
+
def __init__(self, in_ch=3, out_ch=1):
|
347 |
+
super(U2NET, self).__init__()
|
348 |
+
self.edge = sobel_net()
|
349 |
+
|
350 |
+
self.stage1 = RSU7(in_ch, 32, 64)
|
351 |
+
self.pool12 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
352 |
+
|
353 |
+
self.stage2 = RSU6(64, 32, 128)
|
354 |
+
self.pool23 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
355 |
+
|
356 |
+
self.stage3 = RSU5(128, 64, 256)
|
357 |
+
self.pool34 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
358 |
+
|
359 |
+
self.stage4 = RSU4(256, 128, 512)
|
360 |
+
self.pool45 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
361 |
+
|
362 |
+
self.stage5 = RSU4F(512, 256, 512)
|
363 |
+
self.pool56 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
364 |
+
|
365 |
+
self.stage6 = RSU4F(512, 256, 512)
|
366 |
+
|
367 |
+
# decoder
|
368 |
+
self.stage5d = RSU4F(1024, 256, 512)
|
369 |
+
self.stage4d = RSU4(1024, 128, 256)
|
370 |
+
self.stage3d = RSU5(512, 64, 128)
|
371 |
+
self.stage2d = RSU6(256, 32, 64)
|
372 |
+
self.stage1d = RSU7(128, 16, 64)
|
373 |
+
|
374 |
+
self.side1 = nn.Conv2d(64, out_ch, 3, padding=1)
|
375 |
+
self.side2 = nn.Conv2d(64, out_ch, 3, padding=1)
|
376 |
+
self.side3 = nn.Conv2d(128, out_ch, 3, padding=1)
|
377 |
+
self.side4 = nn.Conv2d(256, out_ch, 3, padding=1)
|
378 |
+
self.side5 = nn.Conv2d(512, out_ch, 3, padding=1)
|
379 |
+
self.side6 = nn.Conv2d(512, out_ch, 3, padding=1)
|
380 |
+
|
381 |
+
self.outconv = nn.Conv2d(6, out_ch, 1)
|
382 |
+
|
383 |
+
def forward(self, x):
|
384 |
+
x = self.edge(x)
|
385 |
+
hx = x
|
386 |
+
|
387 |
+
# stage 1
|
388 |
+
hx1 = self.stage1(hx)
|
389 |
+
hx = self.pool12(hx1)
|
390 |
+
|
391 |
+
# stage 2
|
392 |
+
hx2 = self.stage2(hx)
|
393 |
+
hx = self.pool23(hx2)
|
394 |
+
|
395 |
+
# stage 3
|
396 |
+
hx3 = self.stage3(hx)
|
397 |
+
hx = self.pool34(hx3)
|
398 |
+
|
399 |
+
# stage 4
|
400 |
+
hx4 = self.stage4(hx)
|
401 |
+
hx = self.pool45(hx4)
|
402 |
+
|
403 |
+
# stage 5
|
404 |
+
hx5 = self.stage5(hx)
|
405 |
+
hx = self.pool56(hx5)
|
406 |
+
|
407 |
+
# stage 6
|
408 |
+
hx6 = self.stage6(hx)
|
409 |
+
hx6up = _upsample_like(hx6, hx5)
|
410 |
+
|
411 |
+
# -------------------- decoder --------------------
|
412 |
+
hx5d = self.stage5d(torch.cat((hx6up, hx5), 1))
|
413 |
+
hx5dup = _upsample_like(hx5d, hx4)
|
414 |
+
|
415 |
+
hx4d = self.stage4d(torch.cat((hx5dup, hx4), 1))
|
416 |
+
hx4dup = _upsample_like(hx4d, hx3)
|
417 |
+
|
418 |
+
hx3d = self.stage3d(torch.cat((hx4dup, hx3), 1))
|
419 |
+
hx3dup = _upsample_like(hx3d, hx2)
|
420 |
+
|
421 |
+
hx2d = self.stage2d(torch.cat((hx3dup, hx2), 1))
|
422 |
+
hx2dup = _upsample_like(hx2d, hx1)
|
423 |
+
|
424 |
+
hx1d = self.stage1d(torch.cat((hx2dup, hx1), 1))
|
425 |
+
|
426 |
+
# side output
|
427 |
+
d1 = self.side1(hx1d)
|
428 |
+
|
429 |
+
d2 = self.side2(hx2d)
|
430 |
+
d2 = _upsample_like(d2, d1)
|
431 |
+
|
432 |
+
d3 = self.side3(hx3d)
|
433 |
+
d3 = _upsample_like(d3, d1)
|
434 |
+
|
435 |
+
d4 = self.side4(hx4d)
|
436 |
+
d4 = _upsample_like(d4, d1)
|
437 |
+
|
438 |
+
d5 = self.side5(hx5d)
|
439 |
+
d5 = _upsample_like(d5, d1)
|
440 |
+
|
441 |
+
d6 = self.side6(hx6)
|
442 |
+
d6 = _upsample_like(d6, d1)
|
443 |
+
|
444 |
+
d0 = self.outconv(torch.cat((d1, d2, d3, d4, d5, d6), 1))
|
445 |
+
|
446 |
+
return torch.sigmoid(d0), torch.sigmoid(d1), torch.sigmoid(d2), torch.sigmoid(d3), torch.sigmoid(
|
447 |
+
d4), torch.sigmoid(d5), torch.sigmoid(d6)
|
448 |
+
|
449 |
+
|
450 |
+
### U^2-Net small ###
|
451 |
+
class U2NETP(nn.Module):
|
452 |
+
|
453 |
+
def __init__(self, in_ch=3, out_ch=1):
|
454 |
+
super(U2NETP, self).__init__()
|
455 |
+
|
456 |
+
self.stage1 = RSU7(in_ch, 16, 64)
|
457 |
+
self.pool12 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
458 |
+
|
459 |
+
self.stage2 = RSU6(64, 16, 64)
|
460 |
+
self.pool23 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
461 |
+
|
462 |
+
self.stage3 = RSU5(64, 16, 64)
|
463 |
+
self.pool34 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
464 |
+
|
465 |
+
self.stage4 = RSU4(64, 16, 64)
|
466 |
+
self.pool45 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
467 |
+
|
468 |
+
self.stage5 = RSU4F(64, 16, 64)
|
469 |
+
self.pool56 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
470 |
+
|
471 |
+
self.stage6 = RSU4F(64, 16, 64)
|
472 |
+
|
473 |
+
# decoder
|
474 |
+
self.stage5d = RSU4F(128, 16, 64)
|
475 |
+
self.stage4d = RSU4(128, 16, 64)
|
476 |
+
self.stage3d = RSU5(128, 16, 64)
|
477 |
+
self.stage2d = RSU6(128, 16, 64)
|
478 |
+
self.stage1d = RSU7(128, 16, 64)
|
479 |
+
|
480 |
+
self.side1 = nn.Conv2d(64, out_ch, 3, padding=1)
|
481 |
+
self.side2 = nn.Conv2d(64, out_ch, 3, padding=1)
|
482 |
+
self.side3 = nn.Conv2d(64, out_ch, 3, padding=1)
|
483 |
+
self.side4 = nn.Conv2d(64, out_ch, 3, padding=1)
|
484 |
+
self.side5 = nn.Conv2d(64, out_ch, 3, padding=1)
|
485 |
+
self.side6 = nn.Conv2d(64, out_ch, 3, padding=1)
|
486 |
+
|
487 |
+
self.outconv = nn.Conv2d(6, out_ch, 1)
|
488 |
+
|
489 |
+
def forward(self, x):
|
490 |
+
hx = x
|
491 |
+
|
492 |
+
# stage 1
|
493 |
+
hx1 = self.stage1(hx)
|
494 |
+
hx = self.pool12(hx1)
|
495 |
+
|
496 |
+
# stage 2
|
497 |
+
hx2 = self.stage2(hx)
|
498 |
+
hx = self.pool23(hx2)
|
499 |
+
|
500 |
+
# stage 3
|
501 |
+
hx3 = self.stage3(hx)
|
502 |
+
hx = self.pool34(hx3)
|
503 |
+
|
504 |
+
# stage 4
|
505 |
+
hx4 = self.stage4(hx)
|
506 |
+
hx = self.pool45(hx4)
|
507 |
+
|
508 |
+
# stage 5
|
509 |
+
hx5 = self.stage5(hx)
|
510 |
+
hx = self.pool56(hx5)
|
511 |
+
|
512 |
+
# stage 6
|
513 |
+
hx6 = self.stage6(hx)
|
514 |
+
hx6up = _upsample_like(hx6, hx5)
|
515 |
+
|
516 |
+
# decoder
|
517 |
+
hx5d = self.stage5d(torch.cat((hx6up, hx5), 1))
|
518 |
+
hx5dup = _upsample_like(hx5d, hx4)
|
519 |
+
|
520 |
+
hx4d = self.stage4d(torch.cat((hx5dup, hx4), 1))
|
521 |
+
hx4dup = _upsample_like(hx4d, hx3)
|
522 |
+
|
523 |
+
hx3d = self.stage3d(torch.cat((hx4dup, hx3), 1))
|
524 |
+
hx3dup = _upsample_like(hx3d, hx2)
|
525 |
+
|
526 |
+
hx2d = self.stage2d(torch.cat((hx3dup, hx2), 1))
|
527 |
+
hx2dup = _upsample_like(hx2d, hx1)
|
528 |
+
|
529 |
+
hx1d = self.stage1d(torch.cat((hx2dup, hx1), 1))
|
530 |
+
|
531 |
+
# side output
|
532 |
+
d1 = self.side1(hx1d)
|
533 |
+
|
534 |
+
d2 = self.side2(hx2d)
|
535 |
+
d2 = _upsample_like(d2, d1)
|
536 |
+
|
537 |
+
d3 = self.side3(hx3d)
|
538 |
+
d3 = _upsample_like(d3, d1)
|
539 |
+
|
540 |
+
d4 = self.side4(hx4d)
|
541 |
+
d4 = _upsample_like(d4, d1)
|
542 |
+
|
543 |
+
d5 = self.side5(hx5d)
|
544 |
+
d5 = _upsample_like(d5, d1)
|
545 |
+
|
546 |
+
d6 = self.side6(hx6)
|
547 |
+
d6 = _upsample_like(d6, d1)
|
548 |
+
|
549 |
+
d0 = self.outconv(torch.cat((d1, d2, d3, d4, d5, d6), 1))
|
550 |
+
|
551 |
+
return torch.sigmoid(d0), torch.sigmoid(d1), torch.sigmoid(d2), torch.sigmoid(d3), torch.sigmoid(
|
552 |
+
d4), torch.sigmoid(d5), torch.sigmoid(d6)
|
553 |
+
|
554 |
+
|
555 |
+
def get_parameter_number(net):
|
556 |
+
total_num = sum(p.numel() for p in net.parameters())
|
557 |
+
trainable_num = sum(p.numel() for p in net.parameters() if p.requires_grad)
|
558 |
+
return {'Total': total_num, 'Trainable': trainable_num}
|
559 |
+
|
560 |
+
|
561 |
+
if __name__ == '__main__':
|
562 |
+
net = U2NET(4, 1)#.cuda()
|
563 |
+
print(get_parameter_number(net)) # 69090500 加attention后69442032
|
564 |
+
with torch.no_grad():
|
565 |
+
inputs = torch.zeros(1, 3, 256, 256)#.cuda()
|
566 |
+
outs = net(inputs)
|
567 |
+
print(outs[0].shape) # torch.Size([2, 3, 256, 256]) torch.Size([2, 2, 256, 256])
|
unet.py
ADDED
@@ -0,0 +1,401 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torchvision import models
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
|
7 |
+
class sobel_net(nn.Module):
|
8 |
+
def __init__(self):
|
9 |
+
super().__init__()
|
10 |
+
self.conv_opx = nn.Conv2d(1, 1, 3, bias=False)
|
11 |
+
self.conv_opy = nn.Conv2d(1, 1, 3, bias=False)
|
12 |
+
sobel_kernelx = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype='float32').reshape((1, 1, 3, 3))
|
13 |
+
sobel_kernely = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], dtype='float32').reshape((1, 1, 3, 3))
|
14 |
+
self.conv_opx.weight.data = torch.from_numpy(sobel_kernelx)
|
15 |
+
self.conv_opy.weight.data = torch.from_numpy(sobel_kernely)
|
16 |
+
|
17 |
+
for p in self.parameters():
|
18 |
+
p.requires_grad = False
|
19 |
+
|
20 |
+
def forward(self, im): # input rgb
|
21 |
+
x = (0.299 * im[:, 0, :, :] + 0.587 * im[:, 1, :, :] + 0.114 * im[:, 2, :, :]).unsqueeze(1) # rgb2gray
|
22 |
+
gradx = self.conv_opx(x)
|
23 |
+
grady = self.conv_opy(x)
|
24 |
+
|
25 |
+
x = (gradx ** 2 + grady ** 2) ** 0.5
|
26 |
+
x = (x - x.min()) / (x.max() - x.min())
|
27 |
+
x = F.pad(x, (1, 1, 1, 1))
|
28 |
+
|
29 |
+
x = torch.cat([im, x], dim=1)
|
30 |
+
return x
|
31 |
+
|
32 |
+
|
33 |
+
class conv_block(nn.Module):
|
34 |
+
def __init__(self, ch_in, ch_out):
|
35 |
+
super(conv_block, self).__init__()
|
36 |
+
self.conv = nn.Sequential(
|
37 |
+
nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=1, padding=1, bias=True),
|
38 |
+
nn.BatchNorm2d(ch_out),
|
39 |
+
nn.ReLU(inplace=True),
|
40 |
+
nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1, bias=True),
|
41 |
+
nn.BatchNorm2d(ch_out),
|
42 |
+
nn.ReLU(inplace=True)
|
43 |
+
)
|
44 |
+
|
45 |
+
def forward(self, x):
|
46 |
+
x = self.conv(x)
|
47 |
+
return x
|
48 |
+
|
49 |
+
|
50 |
+
class up_conv(nn.Module):
|
51 |
+
def __init__(self, ch_in, ch_out):
|
52 |
+
super(up_conv, self).__init__()
|
53 |
+
self.up = nn.Sequential(
|
54 |
+
nn.Upsample(scale_factor=2),
|
55 |
+
nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=1, padding=1, bias=True),
|
56 |
+
nn.BatchNorm2d(ch_out),
|
57 |
+
nn.ReLU(inplace=True)
|
58 |
+
)
|
59 |
+
|
60 |
+
def forward(self, x):
|
61 |
+
x = self.up(x)
|
62 |
+
return x
|
63 |
+
|
64 |
+
|
65 |
+
class Recurrent_block(nn.Module):
|
66 |
+
def __init__(self, ch_out, t=2):
|
67 |
+
super(Recurrent_block, self).__init__()
|
68 |
+
self.t = t
|
69 |
+
self.ch_out = ch_out
|
70 |
+
self.conv = nn.Sequential(
|
71 |
+
nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1, bias=True),
|
72 |
+
nn.BatchNorm2d(ch_out),
|
73 |
+
nn.ReLU(inplace=True)
|
74 |
+
)
|
75 |
+
|
76 |
+
def forward(self, x):
|
77 |
+
for i in range(self.t):
|
78 |
+
|
79 |
+
if i == 0:
|
80 |
+
x1 = self.conv(x)
|
81 |
+
|
82 |
+
x1 = self.conv(x + x1)
|
83 |
+
return x1
|
84 |
+
|
85 |
+
|
86 |
+
class RRCNN_block(nn.Module):
|
87 |
+
def __init__(self, ch_in, ch_out, t=2):
|
88 |
+
super(RRCNN_block, self).__init__()
|
89 |
+
self.RCNN = nn.Sequential(
|
90 |
+
Recurrent_block(ch_out, t=t),
|
91 |
+
Recurrent_block(ch_out, t=t)
|
92 |
+
)
|
93 |
+
self.Conv_1x1 = nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=1, padding=0)
|
94 |
+
|
95 |
+
def forward(self, x):
|
96 |
+
x = self.Conv_1x1(x)
|
97 |
+
x1 = self.RCNN(x)
|
98 |
+
return x + x1
|
99 |
+
|
100 |
+
|
101 |
+
class single_conv(nn.Module):
|
102 |
+
def __init__(self, ch_in, ch_out):
|
103 |
+
super(single_conv, self).__init__()
|
104 |
+
self.conv = nn.Sequential(
|
105 |
+
nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=1, padding=1, bias=True),
|
106 |
+
nn.BatchNorm2d(ch_out),
|
107 |
+
nn.ReLU(inplace=True)
|
108 |
+
)
|
109 |
+
|
110 |
+
def forward(self, x):
|
111 |
+
x = self.conv(x)
|
112 |
+
return x
|
113 |
+
|
114 |
+
|
115 |
+
class Attention_block(nn.Module):
|
116 |
+
def __init__(self, F_g, F_l, F_int):
|
117 |
+
super(Attention_block, self).__init__()
|
118 |
+
self.W_g = nn.Sequential(
|
119 |
+
nn.Conv2d(F_g, F_int, kernel_size=1, stride=1, padding=0, bias=True),
|
120 |
+
nn.BatchNorm2d(F_int)
|
121 |
+
)
|
122 |
+
|
123 |
+
self.W_x = nn.Sequential(
|
124 |
+
nn.Conv2d(F_l, F_int, kernel_size=1, stride=1, padding=0, bias=True),
|
125 |
+
nn.BatchNorm2d(F_int)
|
126 |
+
)
|
127 |
+
|
128 |
+
self.psi = nn.Sequential(
|
129 |
+
nn.Conv2d(F_int, 1, kernel_size=1, stride=1, padding=0, bias=True),
|
130 |
+
nn.BatchNorm2d(1),
|
131 |
+
nn.Sigmoid()
|
132 |
+
)
|
133 |
+
|
134 |
+
self.relu = nn.ReLU(inplace=True)
|
135 |
+
|
136 |
+
def forward(self, g, x):
|
137 |
+
g1 = self.W_g(g)
|
138 |
+
x1 = self.W_x(x)
|
139 |
+
psi = self.relu(g1 + x1)
|
140 |
+
psi = self.psi(psi)
|
141 |
+
|
142 |
+
return x * psi
|
143 |
+
|
144 |
+
|
145 |
+
class U_Net(nn.Module):
|
146 |
+
def __init__(self, img_ch=3, output_ch=1):
|
147 |
+
super(U_Net, self).__init__()
|
148 |
+
|
149 |
+
self.Maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
|
150 |
+
|
151 |
+
self.Conv1 = conv_block(ch_in=img_ch, ch_out=64)
|
152 |
+
self.Conv2 = conv_block(ch_in=64, ch_out=128)
|
153 |
+
self.Conv3 = conv_block(ch_in=128, ch_out=256)
|
154 |
+
self.Conv4 = conv_block(ch_in=256, ch_out=512)
|
155 |
+
self.Conv5 = conv_block(ch_in=512, ch_out=1024)
|
156 |
+
|
157 |
+
self.Up5 = up_conv(ch_in=1024, ch_out=512)
|
158 |
+
self.Up_conv5 = conv_block(ch_in=1024, ch_out=512)
|
159 |
+
|
160 |
+
self.Up4 = up_conv(ch_in=512, ch_out=256)
|
161 |
+
self.Up_conv4 = conv_block(ch_in=512, ch_out=256)
|
162 |
+
|
163 |
+
self.Up3 = up_conv(ch_in=256, ch_out=128)
|
164 |
+
self.Up_conv3 = conv_block(ch_in=256, ch_out=128)
|
165 |
+
|
166 |
+
self.Up2 = up_conv(ch_in=128, ch_out=64)
|
167 |
+
self.Up_conv2 = conv_block(ch_in=128, ch_out=64)
|
168 |
+
|
169 |
+
self.Conv_1x1 = nn.Conv2d(64, output_ch, kernel_size=1, stride=1, padding=0, bias=False)
|
170 |
+
|
171 |
+
def forward(self, x):
|
172 |
+
# encoding path
|
173 |
+
x1 = self.Conv1(x)
|
174 |
+
|
175 |
+
x2 = self.Maxpool(x1)
|
176 |
+
x2 = self.Conv2(x2)
|
177 |
+
|
178 |
+
x3 = self.Maxpool(x2)
|
179 |
+
x3 = self.Conv3(x3)
|
180 |
+
|
181 |
+
x4 = self.Maxpool(x3)
|
182 |
+
x4 = self.Conv4(x4)
|
183 |
+
|
184 |
+
x5 = self.Maxpool(x4)
|
185 |
+
x5 = self.Conv5(x5)
|
186 |
+
|
187 |
+
# decoding + concat path
|
188 |
+
d5 = self.Up5(x5)
|
189 |
+
d5 = torch.cat((x4, d5), dim=1)
|
190 |
+
|
191 |
+
d5 = self.Up_conv5(d5)
|
192 |
+
|
193 |
+
d4 = self.Up4(d5)
|
194 |
+
d4 = torch.cat((x3, d4), dim=1)
|
195 |
+
d4 = self.Up_conv4(d4)
|
196 |
+
|
197 |
+
d3 = self.Up3(d4)
|
198 |
+
d3 = torch.cat((x2, d3), dim=1)
|
199 |
+
d3 = self.Up_conv3(d3)
|
200 |
+
|
201 |
+
d2 = self.Up2(d3)
|
202 |
+
d2 = torch.cat((x1, d2), dim=1)
|
203 |
+
d2 = self.Up_conv2(d2)
|
204 |
+
|
205 |
+
out = self.Conv_1x1(d2)
|
206 |
+
out = torch.sigmoid(out)
|
207 |
+
|
208 |
+
return out
|
209 |
+
|
210 |
+
|
211 |
+
class U_Net_mini(nn.Module):
|
212 |
+
def __init__(self, img_ch=3, output_ch=1):
|
213 |
+
super(U_Net_mini, self).__init__()
|
214 |
+
|
215 |
+
self.Maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
|
216 |
+
|
217 |
+
self.Conv1 = conv_block(ch_in=img_ch, ch_out=32)
|
218 |
+
self.Conv2 = conv_block(ch_in=32, ch_out=64)
|
219 |
+
self.Conv3 = conv_block(ch_in=64, ch_out=128)
|
220 |
+
self.Conv4 = conv_block(ch_in=128, ch_out=256)
|
221 |
+
self.Conv5 = conv_block(ch_in=256, ch_out=512)
|
222 |
+
|
223 |
+
self.Up5 = up_conv(ch_in=512, ch_out=256)
|
224 |
+
self.Up_conv5 = conv_block(ch_in=512, ch_out=256)
|
225 |
+
|
226 |
+
self.Up4 = up_conv(ch_in=256, ch_out=128)
|
227 |
+
self.Up_conv4 = conv_block(ch_in=256, ch_out=128)
|
228 |
+
|
229 |
+
self.Up3 = up_conv(ch_in=128, ch_out=64)
|
230 |
+
self.Up_conv3 = conv_block(ch_in=128, ch_out=64)
|
231 |
+
|
232 |
+
self.Up2 = up_conv(ch_in=64, ch_out=32)
|
233 |
+
self.Up_conv2 = conv_block(ch_in=64, ch_out=32)
|
234 |
+
|
235 |
+
self.Conv_1x1 = nn.Conv2d(32, output_ch, kernel_size=1, stride=1, padding=0, bias=False)
|
236 |
+
|
237 |
+
def forward(self, x):
|
238 |
+
# encoding path
|
239 |
+
x1 = self.Conv1(x)
|
240 |
+
|
241 |
+
x2 = self.Maxpool(x1)
|
242 |
+
x2 = self.Conv2(x2)
|
243 |
+
|
244 |
+
x3 = self.Maxpool(x2)
|
245 |
+
x3 = self.Conv3(x3)
|
246 |
+
|
247 |
+
x4 = self.Maxpool(x3)
|
248 |
+
x4 = self.Conv4(x4)
|
249 |
+
|
250 |
+
x5 = self.Maxpool(x4)
|
251 |
+
x5 = self.Conv5(x5)
|
252 |
+
|
253 |
+
# decoding + concat path
|
254 |
+
d5 = self.Up5(x5)
|
255 |
+
d5 = torch.cat((x4, d5), dim=1)
|
256 |
+
|
257 |
+
d5 = self.Up_conv5(d5)
|
258 |
+
|
259 |
+
d4 = self.Up4(d5)
|
260 |
+
d4 = torch.cat((x3, d4), dim=1)
|
261 |
+
d4 = self.Up_conv4(d4)
|
262 |
+
|
263 |
+
d3 = self.Up3(d4)
|
264 |
+
d3 = torch.cat((x2, d3), dim=1)
|
265 |
+
d3 = self.Up_conv3(d3)
|
266 |
+
|
267 |
+
d2 = self.Up2(d3)
|
268 |
+
d2 = torch.cat((x1, d2), dim=1)
|
269 |
+
d2 = self.Up_conv2(d2)
|
270 |
+
|
271 |
+
out = self.Conv_1x1(d2)
|
272 |
+
out = torch.sigmoid(out)
|
273 |
+
|
274 |
+
return d4, out
|
275 |
+
|
276 |
+
|
277 |
+
class AttU_Net(nn.Module):
|
278 |
+
def __init__(self, img_ch=3, output_ch=1, need_feature_maps=False):
|
279 |
+
super(AttU_Net, self).__init__()
|
280 |
+
|
281 |
+
self.conv1_ = nn.Sequential(nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),
|
282 |
+
nn.BatchNorm2d(64),
|
283 |
+
nn.ReLU(inplace=True))
|
284 |
+
|
285 |
+
self.Maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
|
286 |
+
|
287 |
+
self.Conv1 = conv_block(ch_in=64, ch_out=64)
|
288 |
+
self.Conv2 = conv_block(ch_in=64, ch_out=128)
|
289 |
+
self.Conv3 = conv_block(ch_in=128, ch_out=256)
|
290 |
+
self.Conv4 = conv_block(ch_in=256, ch_out=512)
|
291 |
+
self.Conv5 = conv_block(ch_in=512, ch_out=1024)
|
292 |
+
|
293 |
+
self.Up5 = up_conv(ch_in=1024, ch_out=512)
|
294 |
+
self.Att5 = Attention_block(F_g=512, F_l=512, F_int=256)
|
295 |
+
self.Up_conv5 = conv_block(ch_in=1024, ch_out=512)
|
296 |
+
|
297 |
+
self.Up4 = up_conv(ch_in=512, ch_out=256)
|
298 |
+
self.Att4 = Attention_block(F_g=256, F_l=256, F_int=128)
|
299 |
+
self.Up_conv4 = conv_block(ch_in=512, ch_out=256)
|
300 |
+
|
301 |
+
self.Up3 = up_conv(ch_in=256, ch_out=128)
|
302 |
+
self.Att3 = Attention_block(F_g=128, F_l=128, F_int=64)
|
303 |
+
self.Up_conv3 = conv_block(ch_in=256, ch_out=128)
|
304 |
+
|
305 |
+
self.Up2 = up_conv(ch_in=128, ch_out=64)
|
306 |
+
self.Att2 = Attention_block(F_g=64, F_l=64, F_int=32)
|
307 |
+
self.Up_conv2 = conv_block(ch_in=128, ch_out=64)
|
308 |
+
|
309 |
+
self.Conv_1x1 = nn.Conv2d(64, output_ch, kernel_size=1, stride=1, padding=0)
|
310 |
+
|
311 |
+
self.need_feature_maps = need_feature_maps
|
312 |
+
|
313 |
+
# self.loc_xy = (torch.stack(torch.meshgrid([torch.arange(0, 256), torch.arange(0, 256)])).permute(0, 2, 1).unsqueeze(0).float() - 127.5) / 127.5 # 1*2*256*256
|
314 |
+
|
315 |
+
def forward(self, x):
|
316 |
+
# encoding path
|
317 |
+
# batch = x.size(0)
|
318 |
+
# if self.need_feature_maps:
|
319 |
+
# x = torch.cat((x, self.loc_xy.repeat(batch, 1, 1, 1).cuda()), dim=1)
|
320 |
+
x1 = self.conv1_(x)
|
321 |
+
x1 = self.Conv1(x1)
|
322 |
+
|
323 |
+
x2 = self.Maxpool(x1)
|
324 |
+
x2 = self.Conv2(x2)
|
325 |
+
|
326 |
+
x3 = self.Maxpool(x2)
|
327 |
+
x3 = self.Conv3(x3)
|
328 |
+
|
329 |
+
x4 = self.Maxpool(x3)
|
330 |
+
x4 = self.Conv4(x4)
|
331 |
+
|
332 |
+
x5 = self.Maxpool(x4)
|
333 |
+
x5 = self.Conv5(x5)
|
334 |
+
|
335 |
+
# decoding + concat path
|
336 |
+
d5 = self.Up5(x5)
|
337 |
+
x4 = self.Att5(g=d5, x=x4)
|
338 |
+
d5 = torch.cat((x4, d5), dim=1)
|
339 |
+
d5 = self.Up_conv5(d5)
|
340 |
+
|
341 |
+
d4 = self.Up4(d5)
|
342 |
+
x3 = self.Att4(g=d4, x=x3)
|
343 |
+
d4 = torch.cat((x3, d4), dim=1)
|
344 |
+
d4 = self.Up_conv4(d4)
|
345 |
+
|
346 |
+
d3 = self.Up3(d4)
|
347 |
+
x2 = self.Att3(g=d3, x=x2)
|
348 |
+
d3 = torch.cat((x2, d3), dim=1)
|
349 |
+
d3 = self.Up_conv3(d3)
|
350 |
+
|
351 |
+
d2 = self.Up2(d3)
|
352 |
+
x1 = self.Att2(g=d2, x=x1)
|
353 |
+
d2 = torch.cat((x1, d2), dim=1)
|
354 |
+
d2 = self.Up_conv2(d2)
|
355 |
+
|
356 |
+
wc = self.Conv_1x1(d2)
|
357 |
+
|
358 |
+
if self.need_feature_maps:
|
359 |
+
return d2, wc
|
360 |
+
else:
|
361 |
+
return bm
|
362 |
+
|
363 |
+
|
364 |
+
class Doc_UNet(nn.Module):
|
365 |
+
def __init__(self):
|
366 |
+
super(Doc_UNet, self).__init__()
|
367 |
+
self.U_net1 = AttU_Net(3, 3, need_feature_maps=True)
|
368 |
+
self.U_net2 = U_Net(64 + 3 + 2, 2, need_feature_maps=False)
|
369 |
+
self.htan = nn.Hardtanh(0, 1.0)
|
370 |
+
self.f_activation = nn.Hardtanh()
|
371 |
+
|
372 |
+
self.loc_xy = (torch.stack(torch.meshgrid([torch.arange(0, 128), torch.arange(0, 128)])).permute(0, 2,
|
373 |
+
1).unsqueeze(
|
374 |
+
0).float() - 63.5) / 63.5 # 1*2*256*256
|
375 |
+
|
376 |
+
def forward(self, x):
|
377 |
+
batch = x.size(0)
|
378 |
+
|
379 |
+
feature_maps, wc = self.U_net1(x)
|
380 |
+
wc = self.htan(wc)
|
381 |
+
|
382 |
+
x = torch.cat((self.loc_xy.repeat(batch, 1, 1, 1).cuda(), wc, feature_maps), dim=1)
|
383 |
+
bm = self.U_net2(x)
|
384 |
+
bm = self.f_activation(bm)
|
385 |
+
|
386 |
+
return wc, bm
|
387 |
+
|
388 |
+
|
389 |
+
def get_parameter_number(net):
|
390 |
+
total_num = sum(p.numel() for p in net.parameters())
|
391 |
+
trainable_num = sum(p.numel() for p in net.parameters() if p.requires_grad)
|
392 |
+
return {'Total': total_num, 'Trainable': trainable_num}
|
393 |
+
|
394 |
+
|
395 |
+
if __name__ == '__main__':
|
396 |
+
net = U2NET(3, 1).cuda()
|
397 |
+
print(get_parameter_number(net)) # 69090500 加attention后69442032
|
398 |
+
with torch.no_grad():
|
399 |
+
inputs = torch.zeros(1, 3, 256, 256).cuda()
|
400 |
+
outs = net(inputs)
|
401 |
+
print(outs[0].shape) # torch.Size([2, 3, 256, 256]) torch.Size([2, 2, 256, 256])
|