from extractor import BasicEncoder from position_encoding import build_position_encoding from unet import U_Net_mini import argparse import numpy as np import torch from torch import nn, Tensor import torch.nn.functional as F import copy from typing import Optional class attnLayer(nn.Module): def __init__(self, d_model, nhead=8, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False): super().__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) self.multihead_attn_list = nn.ModuleList( [copy.deepcopy(nn.MultiheadAttention(d_model, nhead, dropout=dropout)) for i in range(2)]) # Implementation of Feedforward model self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2_list = nn.ModuleList([copy.deepcopy(nn.LayerNorm(d_model)) for i in range(2)]) self.norm3 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2_list = nn.ModuleList([copy.deepcopy(nn.Dropout(dropout)) for i in range(2)]) self.dropout3 = nn.Dropout(dropout) self.activation = _get_activation_fn(activation) self.normalize_before = normalize_before def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward_post(self, tgt, memory_list, tgt_mask=None, memory_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None, pos=None, memory_pos=None): q = k = self.with_pos_embed(tgt, pos) tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0] tgt = tgt + self.dropout1(tgt2) tgt = self.norm1(tgt) for memory, multihead_attn, norm2, dropout2, m_pos in zip(memory_list, self.multihead_attn_list, self.norm2_list, self.dropout2_list, memory_pos): tgt2 = multihead_attn(query=self.with_pos_embed(tgt, pos), key=self.with_pos_embed(memory, m_pos), value=memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask)[0] tgt = tgt + dropout2(tgt2) tgt = norm2(tgt) tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) tgt = tgt + self.dropout3(tgt2) tgt = self.norm3(tgt) return tgt def forward_pre(self, tgt, memory, tgt_mask=None, memory_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None, pos=None, memory_pos=None): tgt2 = self.norm1(tgt) q = k = self.with_pos_embed(tgt2, pos) tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0] tgt = tgt + self.dropout1(tgt2) tgt2 = self.norm2(tgt) tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt2, pos), key=self.with_pos_embed(memory, memory_pos), value=memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask)[0] tgt = tgt + self.dropout2(tgt2) tgt2 = self.norm3(tgt) tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) tgt = tgt + self.dropout3(tgt2) return tgt def forward(self, tgt, memory_list, tgt_mask=None, memory_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None, pos=None, memory_pos=None): if self.normalize_before: return self.forward_pre(tgt, memory_list, tgt_mask, memory_mask, tgt_key_padding_mask, memory_key_padding_mask, pos, memory_pos) return self.forward_post(tgt, memory_list, tgt_mask, memory_mask, tgt_key_padding_mask, memory_key_padding_mask, pos, memory_pos) def _get_clones(module, N): return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) def _get_activation_fn(activation): """Return an activation function given a string""" if activation == "relu": return F.relu if activation == "gelu": return F.gelu if activation == "glu": return F.glu raise RuntimeError(F"activation should be relu/gelu, not {activation}.") class TransDecoder(nn.Module): def __init__(self, num_attn_layers, hidden_dim=128): super(TransDecoder, self).__init__() attn_layer = attnLayer(hidden_dim) self.layers = _get_clones(attn_layer, num_attn_layers) self.position_embedding = build_position_encoding(hidden_dim) def forward(self, imgf, query_embed): pos = self.position_embedding( torch.ones(imgf.shape[0], imgf.shape[2], imgf.shape[3]).bool()) # torch.Size([1, 128, 36, 36]) bs, c, h, w = imgf.shape imgf = imgf.flatten(2).permute(2, 0, 1) # torch.Size([1296, 1, 256]) query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1) pos = pos.flatten(2).permute(2, 0, 1) # torch.Size([1296, 1, 256]) for layer in self.layers: query_embed = layer(query_embed, [imgf], pos=pos, memory_pos=[pos, pos]) query_embed = query_embed.permute(1, 2, 0).reshape(bs, c, h, w) return query_embed class TransEncoder(nn.Module): def __init__(self, num_attn_layers, hidden_dim=128): super(TransEncoder, self).__init__() attn_layer = attnLayer(hidden_dim) self.layers = _get_clones(attn_layer, num_attn_layers) self.position_embedding = build_position_encoding(hidden_dim) def forward(self, imgf): pos = self.position_embedding( torch.ones(imgf.shape[0], imgf.shape[2], imgf.shape[3]).bool()) # torch.Size([1, 128, 36, 36]) bs, c, h, w = imgf.shape imgf = imgf.flatten(2).permute(2, 0, 1) pos = pos.flatten(2).permute(2, 0, 1) for layer in self.layers: imgf = layer(imgf, [imgf], pos=pos, memory_pos=[pos, pos]) imgf = imgf.permute(1, 2, 0).reshape(bs, c, h, w) return imgf class FlowHead(nn.Module): def __init__(self, input_dim=128, hidden_dim=256, out_cha=2): super(FlowHead, self).__init__() self.conv1 = nn.Conv2d(input_dim, hidden_dim, 3, padding=1) self.conv2 = nn.Conv2d(hidden_dim, out_cha, 3, padding=1) self.relu = nn.ReLU(inplace=True) def forward(self, x): return self.conv2(self.relu(self.conv1(x))) class UpdateBlock(nn.Module): def __init__(self, hidden_dim=128): super(UpdateBlock, self).__init__() self.flow_head = FlowHead(hidden_dim, hidden_dim=256) self.mask = nn.Sequential( nn.Conv2d(hidden_dim, 256, 3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 64 * 9, 1, padding=0)) def forward(self, imgf, coords1): mask = .25 * self.mask(imgf) # scale mask to balence gradients dflow = self.flow_head(imgf) coords1 = coords1 + dflow return mask, coords1 def coords_grid(batch, ht, wd): coords = torch.meshgrid(torch.arange(ht), torch.arange(wd)) coords = torch.stack(coords[::-1], dim=0).float() return coords[None].repeat(batch, 1, 1, 1) def upflow8(flow, mode='bilinear'): new_size = (8 * flow.shape[2], 8 * flow.shape[3]) return 8 * F.interpolate(flow, size=new_size, mode=mode, align_corners=True) class Up_block(nn.Module): def __init__(self, hidden_dim=128, out_cha=3): super(Up_block, self).__init__() self.flow_head = FlowHead(hidden_dim, hidden_dim=256, out_cha=out_cha) self.acf = nn.Hardtanh(0, 1) def forward(self, x): x = self.flow_head(x) x = upflow8(x) x = self.acf(x) return x class DocGeoNet(nn.Module): def __init__(self): super(DocGeoNet, self).__init__() self.hidden_dim = hdim = 128 self.imcnn = BasicEncoder(input_dim=3, output_dim=hdim, norm_fn='instance') # uv self.wc_encoder = TransEncoder(4, hidden_dim=hdim) # uv tail self.Up_block_wc = nn.Sequential(TransEncoder(2, hidden_dim=hdim), Up_block(self.hidden_dim)) # text self.text_encoder = U_Net_mini(3, 1) self.textcnn = nn.Conv2d(128, 64, 3, 2, 1) # BasicEncoder(input_dim=32, output_dim=64, norm_fn='instance') # 6 self.bm_encoder = TransEncoder(6, hidden_dim=hdim + 64) # bm tail self.update_block = UpdateBlock(self.hidden_dim + 64) def initialize_flow(self, img): N, C, H, W = img.shape coodslar = coords_grid(N, H, W).to(img.device) coords0 = coords_grid(N, H // 8, W // 8).to(img.device) coords1 = coords_grid(N, H // 8, W // 8).to(img.device) return coodslar, coords0, coords1 def upsample_flow(self, flow, mask): N, _, H, W = flow.shape mask = mask.view(N, 1, 9, 8, 8, H, W) mask = torch.softmax(mask, dim=2) up_flow = F.unfold(8 * flow, [3, 3], padding=1) up_flow = up_flow.view(N, 2, 9, 1, 1, H, W) up_flow = torch.sum(mask * up_flow, dim=2) up_flow = up_flow.permute(0, 1, 4, 2, 5, 3) return up_flow.reshape(N, 2, 8 * H, 8 * W) def forward(self, image1): # wc imfmap = self.imcnn(image1) imfmap = torch.relu(imfmap) wcfea = self.wc_encoder(imfmap) wc_pred = self.Up_block_wc(wcfea) # text d4, text_pred = self.text_encoder(image1) textfea = self.textcnn(d4) fmap = torch.cat((wcfea, textfea), 1) # bm encoder fmap = self.bm_encoder(fmap) # upsample coodslar, coords0, coords1 = self.initialize_flow(image1) coords1 = coords1.detach() mask, coords1 = self.update_block(fmap, coords1) flow_up = self.upsample_flow(coords1 - coords0, mask) bm_up = coodslar + flow_up return wc_pred, text_pred, bm_up