Spaces:
Sleeping
Sleeping
File size: 4,385 Bytes
8273cb9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import collections
import os
import shutil
import tempfile
import unittest
import numpy as np
import torch
from scripts.average_checkpoints import average_checkpoints
from torch import nn
class ModelWithSharedParameter(nn.Module):
def __init__(self):
super(ModelWithSharedParameter, self).__init__()
self.embedding = nn.Embedding(1000, 200)
self.FC1 = nn.Linear(200, 200)
self.FC2 = nn.Linear(200, 200)
# tie weight in FC2 to FC1
self.FC2.weight = nn.Parameter(self.FC1.weight)
self.FC2.bias = nn.Parameter(self.FC1.bias)
self.relu = nn.ReLU()
def forward(self, input):
return self.FC2(self.ReLU(self.FC1(input))) + self.FC1(input)
class TestAverageCheckpoints(unittest.TestCase):
def test_average_checkpoints(self):
params_0 = collections.OrderedDict(
[
("a", torch.DoubleTensor([100.0])),
("b", torch.FloatTensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])),
("c", torch.IntTensor([7, 8, 9])),
]
)
params_1 = collections.OrderedDict(
[
("a", torch.DoubleTensor([1.0])),
("b", torch.FloatTensor([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]])),
("c", torch.IntTensor([2, 2, 2])),
]
)
params_avg = collections.OrderedDict(
[
("a", torch.DoubleTensor([50.5])),
("b", torch.FloatTensor([[1.0, 1.5, 2.0], [2.5, 3.0, 3.5]])),
# We expect truncation for integer division
("c", torch.IntTensor([4, 5, 5])),
]
)
fd_0, path_0 = tempfile.mkstemp()
fd_1, path_1 = tempfile.mkstemp()
torch.save(collections.OrderedDict([("model", params_0)]), path_0)
torch.save(collections.OrderedDict([("model", params_1)]), path_1)
output = average_checkpoints([path_0, path_1])["model"]
os.close(fd_0)
os.remove(path_0)
os.close(fd_1)
os.remove(path_1)
for (k_expected, v_expected), (k_out, v_out) in zip(
params_avg.items(), output.items()
):
self.assertEqual(
k_expected,
k_out,
"Key mismatch - expected {} but found {}. "
"(Expected list of keys: {} vs actual list of keys: {})".format(
k_expected, k_out, params_avg.keys(), output.keys()
),
)
np.testing.assert_allclose(
v_expected.numpy(),
v_out.numpy(),
err_msg="Tensor value mismatch for key {}".format(k_expected),
)
def test_average_checkpoints_with_shared_parameters(self):
def _construct_model_with_shared_parameters(path, value):
m = ModelWithSharedParameter()
nn.init.constant_(m.FC1.weight, value)
torch.save({"model": m.state_dict()}, path)
return m
tmpdir = tempfile.mkdtemp()
paths = []
path = os.path.join(tmpdir, "m1.pt")
m1 = _construct_model_with_shared_parameters(path, 1.0)
paths.append(path)
path = os.path.join(tmpdir, "m2.pt")
m2 = _construct_model_with_shared_parameters(path, 2.0)
paths.append(path)
path = os.path.join(tmpdir, "m3.pt")
m3 = _construct_model_with_shared_parameters(path, 3.0)
paths.append(path)
new_model = average_checkpoints(paths)
self.assertTrue(
torch.equal(
new_model["model"]["embedding.weight"],
(m1.embedding.weight + m2.embedding.weight + m3.embedding.weight) / 3.0,
)
)
self.assertTrue(
torch.equal(
new_model["model"]["FC1.weight"],
(m1.FC1.weight + m2.FC1.weight + m3.FC1.weight) / 3.0,
)
)
self.assertTrue(
torch.equal(
new_model["model"]["FC2.weight"],
(m1.FC2.weight + m2.FC2.weight + m3.FC2.weight) / 3.0,
)
)
shutil.rmtree(tmpdir)
if __name__ == "__main__":
unittest.main()
|