d22cs051's picture
retriying pushing the code
8273cb9
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import torch
import torch.nn as nn
from fairseq.modules.checkpoint_activations import checkpoint_wrapper
from torch.utils.checkpoint import checkpoint
class Model(nn.Module):
def __init__(
self, use_pytorch_checkpoint=False, use_fairseq_checkpoint=False, **kwargs
):
super().__init__()
torch.manual_seed(0)
self.use_pytorch_checkpoint = use_pytorch_checkpoint
self.ffn = nn.Sequential(
nn.Linear(32, 128),
# add a Dropout layer to test RNG save/restore
nn.Dropout(p=0.5),
nn.Linear(128, 32),
)
if use_fairseq_checkpoint:
self.ffn = checkpoint_wrapper(self.ffn, **kwargs)
self.out = nn.Linear(32, 1)
def forward(self, x):
if self.use_pytorch_checkpoint:
x = checkpoint(self.ffn, x)
else:
x = self.ffn(x)
return self.out(x)
class TestActivationCheckpointing(unittest.TestCase):
def _test_checkpoint_wrapper(self, device, log_memory_usage=False):
def get_loss_and_gnorm(model):
torch.manual_seed(1)
input = torch.rand(2, 16, 32).requires_grad_(True).to(device)
model.zero_grad()
loss = model(input).sum()
loss.backward()
gnorm = torch.norm(
torch.stack([torch.norm(p.grad.detach()) for p in model.parameters()])
)
return {"loss": loss, "gnorm": gnorm}
model = Model().to(device)
no_cpt = get_loss_and_gnorm(model)
model = Model(use_pytorch_checkpoint=True).to(device)
pyt_cpt = get_loss_and_gnorm(model)
torch.testing.assert_allclose(no_cpt["loss"], pyt_cpt["loss"])
torch.testing.assert_allclose(no_cpt["gnorm"], pyt_cpt["gnorm"])
model = Model(use_fairseq_checkpoint=True).to(device)
fairseq_cpt = get_loss_and_gnorm(model)
torch.testing.assert_allclose(no_cpt["loss"], fairseq_cpt["loss"])
torch.testing.assert_allclose(no_cpt["gnorm"], fairseq_cpt["gnorm"])
model = Model(use_fairseq_checkpoint=True, offload_to_cpu=True).to(device)
fairseq_cpt_offload = get_loss_and_gnorm(model)
torch.testing.assert_allclose(no_cpt["loss"], fairseq_cpt_offload["loss"])
torch.testing.assert_allclose(no_cpt["gnorm"], fairseq_cpt_offload["gnorm"])
def test_checkpoint_wrapper_cpu(self):
self._test_checkpoint_wrapper(device=torch.device("cpu"))
@unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU")
def test_checkpoint_wrapper_cuda(self):
self._test_checkpoint_wrapper(device=torch.device("cuda"))
if __name__ == "__main__":
unittest.main()