Audio-Deepfake-Detection
/
fairseq-a54021305d6b3c4c5959ac9395135f63202db8f1
/tests
/test_amp_optimizer.py
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import argparse | |
import copy | |
import unittest | |
import torch | |
from torch.cuda.amp import GradScaler, autocast | |
from fairseq.optim import build_optimizer | |
class TestGradientScalingAMP(unittest.TestCase): | |
def setUp(self): | |
self.x = torch.tensor([2.0]).cuda().half() | |
weight = 3.0 | |
bias = 5.0 | |
self.error = 1.0 | |
self.target = torch.tensor([self.x * weight + bias + self.error]).cuda() | |
self.loss_fn = torch.nn.L1Loss() | |
self.model = torch.nn.Linear(1, 1) | |
self.model.weight.data = torch.tensor([[weight]]) | |
self.model.bias.data = torch.tensor([bias]) | |
self.model.cuda() | |
self.params = list(self.model.parameters()) | |
self.namespace_dls = argparse.Namespace( | |
optimizer="adam", | |
lr=[0.1], | |
adam_betas="(0.9, 0.999)", | |
adam_eps=1e-8, | |
weight_decay=0.0, | |
threshold_loss_scale=1, | |
min_loss_scale=1e-4, | |
) | |
self.scaler = GradScaler( | |
init_scale=1, | |
growth_interval=1, | |
) | |
def run_iter(self, model, params, optimizer): | |
optimizer.zero_grad() | |
with autocast(): | |
y = model(self.x) | |
loss = self.loss_fn(y, self.target) | |
self.scaler.scale(loss).backward() | |
self.assertEqual(loss, torch.tensor(1.0, device="cuda:0", dtype=torch.float16)) | |
self.scaler.unscale_(optimizer) | |
grad_norm = optimizer.clip_grad_norm(0) | |
self.assertAlmostEqual(grad_norm.item(), 2.2361, 4) | |
self.scaler.step(optimizer) | |
self.scaler.update() | |
self.assertEqual( | |
model.weight, | |
torch.tensor([[3.1]], device="cuda:0", requires_grad=True), | |
) | |
self.assertEqual( | |
model.bias, | |
torch.tensor([5.1], device="cuda:0", requires_grad=True), | |
) | |
self.assertEqual(self.scaler.get_scale(), 2.0) | |
def test_automatic_mixed_precision(self): | |
model = copy.deepcopy(self.model) | |
params = list(model.parameters()) | |
optimizer = build_optimizer(self.namespace_dls, params) | |
self.run_iter(model, params, optimizer) | |