Audio-Deepfake-Detection
/
fairseq-a54021305d6b3c4c5959ac9395135f63202db8f1
/tests
/test_label_smoothing.py
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import argparse | |
import copy | |
import unittest | |
import tests.utils as test_utils | |
import torch | |
from fairseq.criterions.cross_entropy import CrossEntropyCriterion | |
from fairseq.criterions.label_smoothed_cross_entropy import ( | |
LabelSmoothedCrossEntropyCriterion, | |
) | |
class TestLabelSmoothing(unittest.TestCase): | |
def setUp(self): | |
# build dictionary | |
self.d = test_utils.dummy_dictionary(3) | |
vocab = len(self.d) | |
self.assertEqual(vocab, 4 + 3) # 4 special + 3 tokens | |
self.assertEqual(self.d.pad(), 1) | |
self.assertEqual(self.d.eos(), 2) | |
self.assertEqual(self.d.unk(), 3) | |
pad, eos, unk, w1, w2, w3 = 1, 2, 3, 4, 5, 6 # noqa: F841 | |
# build dataset | |
self.data = [ | |
# the first batch item has padding | |
{ | |
"source": torch.LongTensor([w1, eos]), | |
"target": torch.LongTensor([w1, eos]), | |
}, | |
{ | |
"source": torch.LongTensor([w1, eos]), | |
"target": torch.LongTensor([w1, w1, eos]), | |
}, | |
] | |
self.sample = next(test_utils.dummy_dataloader(self.data)) | |
# build model | |
self.args = argparse.Namespace() | |
self.args.sentence_avg = False | |
self.args.report_accuracy = False | |
self.args.probs = ( | |
torch.FloatTensor( | |
[ | |
# pad eos unk w1 w2 w3 | |
[0.05, 0.05, 0.1, 0.05, 0.3, 0.4, 0.05], | |
[0.05, 0.10, 0.2, 0.05, 0.2, 0.3, 0.10], | |
[0.05, 0.15, 0.3, 0.05, 0.1, 0.2, 0.15], | |
] | |
) | |
.unsqueeze(0) | |
.expand(2, 3, 7) | |
) # add batch dimension | |
self.task = test_utils.TestTranslationTask.setup_task(self.args, self.d, self.d) | |
self.model = self.task.build_model(self.args) | |
def test_nll_loss(self): | |
self.args.label_smoothing = 0.1 | |
nll_crit = CrossEntropyCriterion.build_criterion(self.args, self.task) | |
smooth_crit = LabelSmoothedCrossEntropyCriterion.build_criterion( | |
self.args, self.task | |
) | |
nll_loss, nll_sample_size, nll_logging_output = nll_crit( | |
self.model, self.sample | |
) | |
smooth_loss, smooth_sample_size, smooth_logging_output = smooth_crit( | |
self.model, self.sample | |
) | |
self.assertLess(abs(nll_loss - nll_logging_output["loss"]), 1e-6) | |
self.assertLess(abs(nll_loss - smooth_logging_output["nll_loss"]), 1e-6) | |
def test_padding(self): | |
self.args.label_smoothing = 0.1 | |
crit = LabelSmoothedCrossEntropyCriterion.build_criterion(self.args, self.task) | |
loss, _, logging_output = crit(self.model, self.sample) | |
def get_one_no_padding(idx): | |
# create a new sample with just a single batch item so that there's | |
# no padding | |
sample1 = next(test_utils.dummy_dataloader([self.data[idx]])) | |
args1 = copy.copy(self.args) | |
args1.probs = args1.probs[idx, :, :].unsqueeze(0) | |
model1 = self.task.build_model(args1) | |
loss1, _, _ = crit(model1, sample1) | |
return loss1 | |
loss1 = get_one_no_padding(0) | |
loss2 = get_one_no_padding(1) | |
self.assertAlmostEqual(loss, loss1 + loss2) | |
def test_reduction(self): | |
self.args.label_smoothing = 0.1 | |
crit = LabelSmoothedCrossEntropyCriterion.build_criterion(self.args, self.task) | |
loss, _, logging_output = crit(self.model, self.sample, reduce=True) | |
unreduced_loss, _, _ = crit(self.model, self.sample, reduce=False) | |
self.assertAlmostEqual(loss, unreduced_loss.sum()) | |
def test_zero_eps(self): | |
self.args.label_smoothing = 0.0 | |
nll_crit = CrossEntropyCriterion.build_criterion(self.args, self.task) | |
smooth_crit = LabelSmoothedCrossEntropyCriterion.build_criterion( | |
self.args, self.task | |
) | |
nll_loss, nll_sample_size, nll_logging_output = nll_crit( | |
self.model, self.sample | |
) | |
smooth_loss, smooth_sample_size, smooth_logging_output = smooth_crit( | |
self.model, self.sample | |
) | |
self.assertAlmostEqual(nll_loss, smooth_loss) | |
def assertAlmostEqual(self, t1, t2): | |
self.assertEqual(t1.size(), t2.size(), "size mismatch") | |
self.assertLess((t1 - t2).abs().max(), 1e-6) | |
if __name__ == "__main__": | |
unittest.main() | |