|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import torch |
|
from fairseq import utils |
|
|
|
|
|
class TestUtils(unittest.TestCase): |
|
def test_convert_padding_direction(self): |
|
pad = 1 |
|
left_pad = torch.LongTensor( |
|
[ |
|
[2, 3, 4, 5, 6], |
|
[1, 7, 8, 9, 10], |
|
[1, 1, 1, 11, 12], |
|
] |
|
) |
|
right_pad = torch.LongTensor( |
|
[ |
|
[2, 3, 4, 5, 6], |
|
[7, 8, 9, 10, 1], |
|
[11, 12, 1, 1, 1], |
|
] |
|
) |
|
|
|
self.assertAlmostEqual( |
|
right_pad, |
|
utils.convert_padding_direction( |
|
left_pad, |
|
pad, |
|
left_to_right=True, |
|
), |
|
) |
|
self.assertAlmostEqual( |
|
left_pad, |
|
utils.convert_padding_direction( |
|
right_pad, |
|
pad, |
|
right_to_left=True, |
|
), |
|
) |
|
|
|
def test_make_positions(self): |
|
pad = 1 |
|
left_pad_input = torch.LongTensor( |
|
[ |
|
[9, 9, 9, 9, 9], |
|
[1, 9, 9, 9, 9], |
|
[1, 1, 1, 9, 9], |
|
] |
|
) |
|
left_pad_output = torch.LongTensor( |
|
[ |
|
[2, 3, 4, 5, 6], |
|
[1, 2, 3, 4, 5], |
|
[1, 1, 1, 2, 3], |
|
] |
|
) |
|
right_pad_input = torch.LongTensor( |
|
[ |
|
[9, 9, 9, 9, 9], |
|
[9, 9, 9, 9, 1], |
|
[9, 9, 1, 1, 1], |
|
] |
|
) |
|
right_pad_output = torch.LongTensor( |
|
[ |
|
[2, 3, 4, 5, 6], |
|
[2, 3, 4, 5, 1], |
|
[2, 3, 1, 1, 1], |
|
] |
|
) |
|
|
|
self.assertAlmostEqual( |
|
left_pad_output, |
|
utils.make_positions(left_pad_input, pad), |
|
) |
|
self.assertAlmostEqual( |
|
right_pad_output, |
|
utils.make_positions(right_pad_input, pad), |
|
) |
|
|
|
def test_clip_grad_norm_(self): |
|
params = torch.nn.Parameter(torch.zeros(5)).requires_grad_(False) |
|
grad_norm = utils.clip_grad_norm_(params, 1.0) |
|
self.assertTrue(torch.is_tensor(grad_norm)) |
|
self.assertEqual(grad_norm, 0.0) |
|
|
|
params = [torch.nn.Parameter(torch.zeros(5)) for i in range(3)] |
|
for p in params: |
|
p.grad = torch.full((5,), fill_value=2.0) |
|
grad_norm = utils.clip_grad_norm_(params, 1.0) |
|
exp_grad_norm = torch.full((15,), fill_value=2.0).norm() |
|
self.assertTrue(torch.is_tensor(grad_norm)) |
|
self.assertEqual(grad_norm, exp_grad_norm) |
|
|
|
grad_norm = utils.clip_grad_norm_(params, 1.0) |
|
self.assertAlmostEqual(grad_norm, torch.tensor(1.0)) |
|
|
|
def test_resolve_max_positions_with_tuple(self): |
|
resolved = utils.resolve_max_positions(None, (2000, 100, 2000), 12000) |
|
self.assertEqual(resolved, (2000, 100, 2000)) |
|
|
|
def assertAlmostEqual(self, t1, t2): |
|
self.assertEqual(t1.size(), t2.size(), "size mismatch") |
|
self.assertLess(utils.item((t1 - t2).abs().max()), 1e-4) |
|
|
|
|
|
if __name__ == "__main__": |
|
unittest.main() |
|
|