File size: 7,586 Bytes
cc87b21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0e9162
 
cc87b21
 
 
 
 
 
 
 
 
 
 
 
c0e9162
 
cc87b21
 
 
 
 
 
 
 
 
 
 
 
 
c0e9162
 
cc87b21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0e9162
 
cc87b21
 
 
 
 
 
 
 
 
 
 
 
c0e9162
 
cc87b21
 
 
 
 
 
 
 
 
 
 
 
 
c0e9162
 
cc87b21
 
1fcc608
 
77bae22
cc87b21
 
 
 
 
 
 
 
 
 
 
b0e5419
cc87b21
 
 
 
 
 
 
 
 
 
 
 
 
 
b0e5419
cc87b21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7b4c51
7f64e97
cc87b21
eebb69d
ed1ab29
2a45c40
cc87b21
 
3ee882a
cc87b21
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import gradio as gr
import tensorflow as tf
from keras.datasets import mnist     
from keras.utils import np_utils   
from tensorflow import keras
import numpy as np
from tensorflow.keras import datasets
import os
import matplotlib.pyplot as plt
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' 

# Adversarial attacks mnist
def create_pattern_mnist(image, label, model):
    # Define loss function
    loss_function = tf.keras.losses.CategoricalCrossentropy()
    # Reshape image
    image = image.reshape((1,image.shape[0]))
    image = tf.cast(image, tf.float32)
    # Reshape label
    label = label.reshape(((1,label.shape[0])))
    with tf.GradientTape() as tape:
      tape.watch(image)
      prediction = model(image)
      loss = loss_function(label, prediction)
    
    # Get the gradients of the loss w.r.t to the input image.
    gradient = tape.gradient(loss, image)
    # Get the sign of the gradients to create the perturbation
    signed_grad = tf.sign(gradient)
    return signed_grad.numpy()

def fgsm_mnist(image, label, model, epsilon):
    pattern = create_pattern_mnist(image, label, model)
    adv_x = image + epsilon*pattern
    adv_x = tf.clip_by_value(adv_x, 0, 1)
    # adv_x = adv_x * 0.5 + 0.5 
    return adv_x.numpy()

    

def iterative_fgsm_mnist(image, label, model, epsilon, alpha, niter):
    adv_x = image
    for _ in range(niter):
        pattern = create_pattern_mnist(adv_x, label, model)
        adv_x = adv_x + alpha * pattern
        adv_x = tf.clip_by_value(adv_x, image - epsilon, image+epsilon)
        adv_x = adv_x.numpy()
        adv_x = adv_x.reshape(adv_x.shape[1])
    adv_x = tf.clip_by_value(adv_x, 0, 1)
    # adv_x = adv_x * 0.5 + 0.5
    return adv_x.numpy()

def iterative_least_likely_fgsm_mnist(image, model, epsilon, alpha, niter, nb_classes):
    adv_x = image
    image = image.reshape((1,image.shape[0]))
    label = np_utils.to_categorical(np.argmin(model(image)), nb_classes)
    image = image.reshape(image.shape[1])
    for _ in range(niter):
        pattern = create_pattern_mnist(adv_x, label, model)
        adv_x = adv_x - alpha * pattern
        adv_x = tf.clip_by_value(adv_x, image - epsilon, image+epsilon)
        adv_x = adv_x.numpy()
        adv_x = adv_x.reshape(adv_x.shape[1])
    adv_x = tf.clip_by_value(adv_x, 0, 1)
    # adv_x = adv_x * 0.5 + 0.5
    return adv_x.numpy()

# Attack functions cifar10
def create_pattern_cifar10(image, label, model):
    # Define loss function
    loss_function = tf.keras.losses.CategoricalCrossentropy()
    # Reshape image
    image = image.reshape((1,32,32,3))
    image = tf.cast(image, tf.float32)
    # Reshape label
    label = label.reshape(((1,10)))
    with tf.GradientTape() as tape:
      tape.watch(image)
      prediction = model(image)
      loss = loss_function(label, prediction)
    
    # Get the gradients of the loss w.r.t to the input image.
    gradient = tape.gradient(loss, image)
    # Get the sign of the gradients to create the perturbation
    signed_grad = tf.sign(gradient)
    return signed_grad.numpy()

def fgsm_cifar10(image, label, model, epsilon):
    pattern = create_pattern_cifar10(image, label, model)
    adv_x = image + epsilon*pattern
    adv_x = tf.clip_by_value(adv_x, 0, 1)
    # adv_x = adv_x * 0.5 + 0.5 
    return adv_x.numpy()

    

def iterative_fgsm_cifar10(image, label, model, epsilon, alpha, niter):
    adv_x = image
    for _ in range(niter):
        pattern = create_pattern_cifar10(adv_x, label, model)
        adv_x = adv_x + alpha * pattern
        adv_x = tf.clip_by_value(adv_x, image - epsilon, image+epsilon)
        adv_x = adv_x.numpy()
        adv_x = adv_x.reshape((32,32,3))
    adv_x = tf.clip_by_value(adv_x, 0, 1)
    # adv_x = adv_x * 0.5 + 0.5
    return adv_x.numpy()

def iterative_least_likely_fgsm_cifar10(image, model, epsilon, alpha, niter, nb_classes):
    adv_x = image
    image = image.reshape((1,32,32,3))
    label = np_utils.to_categorical(np.argmin(model(image)), nb_classes)
    image = image.reshape((32,32,3))
    for _ in range(niter):
        pattern = create_pattern_cifar10(adv_x, label, model)
        adv_x = adv_x - alpha * pattern
        adv_x = tf.clip_by_value(adv_x, image - epsilon, image+epsilon)
        adv_x = adv_x.numpy()
        adv_x = adv_x.reshape((32,32,3))
    adv_x = tf.clip_by_value(adv_x, 0, 1)
    # adv_x = adv_x * 0.5 + 0.5
    return adv_x.numpy()

def fn(dataset, attack, epsilon):
    epsilon = epsilon/255
    alpha = 1
    niter = int(min(4 + epsilon*255, 1.25 * epsilon * 255))
    nb_classes = 10
    classes = ["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"]
    
    if dataset == "MNIST":
        idx = np.random.randint(0, len(X_test_mnist))
        image1 = X_test_mnist[idx]
        label1 = Y_test_mnist[idx]
        pred1 = np.argmax(label1)
        if attack == "FGSM":
            image2 = fgsm_mnist(image1, label1, model_mnist, epsilon)
        elif attack == "I-FGSM":
            image2 = iterative_fgsm_mnist(image1, label1, model_mnist, epsilon, alpha, niter)
        else:
            image2 = iterative_least_likely_fgsm_mnist(image1, model_mnist, epsilon, alpha, niter, nb_classes)
        
        pred2 = np.argmax(model_mnist(image2.reshape((1,784))))
        image1 = image1.reshape((28,28))
        image2 = image2.reshape((28,28))
    else:
        idx = np.random.randint(0, len(X_test_cifar10))
        image1 = X_test_cifar10[idx]
        label1 = Y_test_cifar10[idx]
        pred1 = classes[np.argmax(label1)]
        if attack == "FGSM":
            image2 = fgsm_cifar10(image1, label1, model_cifar10, epsilon)
        elif attack == "I-FGSM":
            image2 = iterative_fgsm_cifar10(image1, label1, model_cifar10, epsilon, alpha, niter)
        else:
            image2 = iterative_least_likely_fgsm_cifar10(image1, model_cifar10, epsilon, alpha, niter, nb_classes)
        
        pred2 = classes[np.argmax(model_cifar10(image2.reshape((1,32,32,3))))]
        image1 = image1.reshape((32,32,3))
        image2 = image2.reshape((32,32,3))

    return image1, pred1, image2, pred2


model_mnist = keras.models.load_model('mnist.h5')
model_cifar10 = keras.models.load_model('cifar10.h5')

# Load MNIST data
(_, _), (X_test_mnist, Y_test_mnist) = mnist.load_data()
X_test_mnist = X_test_mnist.astype('float32')  
X_test_mnist = X_test_mnist.reshape(10000, 784)          
X_test_mnist /= 255
nb_classes = 10
Y_test_mnist = np_utils.to_categorical(Y_test_mnist, nb_classes)


# Load CIFAR10 data
(_, _), (X_test_cifar10, Y_test_cifar10) = datasets.cifar10.load_data()
X_test_cifar10 =  X_test_cifar10 / 255.0
Y_test_cifar10 = np_utils.to_categorical(Y_test_cifar10, nb_classes) 

demo = gr.Interface(
    fn=fn,
    allow_flagging="never",
    title="Adversarial attack demonstration",
    description="A random image from the chosen dataset will be perturbated with the chosen attack type and both the original image and the perturbated image will be displayed. The epsilon parameter controls the aggressiveness of the attack.",
    inputs=[
        gr.Radio(choices=["MNIST", "CIFAR10"], label="Dataset", value="MNIST"),
        gr.Radio(choices=["FGSM", "I-FGSM", "I-LL-FGSM"], label="Attack", value="FGSM"),
        gr.Slider(value=15, minimum=0, maximum=255, step=1, label="Epsilon"),
        ],
    outputs=[
        gr.Image(label="Original Image").style(height=256,width=256),
        gr.Textbox(label="Predicted class"),
        gr.Image(label="Perturbated image").style(height=256,width=256),
        gr.Textbox(label="Predicted class")],
)
demo.launch()