Spaces:
Running
Running
File size: 11,923 Bytes
f73dc21 94c41db f73dc21 4067c90 5e0e037 4067c90 f73dc21 94c41db f73dc21 6a4a8e0 f73dc21 6a4a8e0 f73dc21 4067c90 f73dc21 4067c90 f73dc21 6a4a8e0 4067c90 6a4a8e0 4067c90 6a4a8e0 4067c90 6a4a8e0 4067c90 6a4a8e0 f73dc21 4067c90 f73dc21 4067c90 6a4a8e0 f73dc21 6a4a8e0 4067c90 6a4a8e0 f73dc21 4067c90 6a4a8e0 f73dc21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import urllib.request, urllib.error, urllib.parse
import json
import pandas as pd
import ssl
import torch
import re
from pprint import pprint
from captum.attr import visualization
REST_URL = "http://data.bioontology.org"
API_KEY = "604a90bc-ef14-4c26-a347-f4928fa086ea"
ssl._create_default_https_context = ssl._create_unverified_context
class PyTMinMaxScalerVectorized(object):
"""
From https://discuss.pytorch.org/t/using-scikit-learns-scalers-for-torchvision/53455
Transforms each channel to the range [0, 1].
"""
def __call__(self, tensor):
scale = 1.0 / (tensor.max(dim=0, keepdim=True)[0] - tensor.min(dim=0, keepdim=True)[0])
tensor.mul_(scale).sub_(tensor.min(dim=0, keepdim=True)[0])
return tensor
def get_diseases(text, pipe):
results = pipe(text)
diseases = []
disease_span = []
for result in results:
ent = result['entity']
# start of a new entity
if ent == 'B-DISEASE':
disease_span = result['start'], result['end']
elif ent == 'I-DISEASE':
if len(disease_span) == 0:
disease_span = []
else:
disease_span = disease_span[0], result['end']
else:
if len(disease_span) > 1:
disease = text[disease_span[0]: disease_span[1]]
if len(disease) > 2:
diseases.append(disease)
disease_span = []
if len(disease_span) > 1:
disease = text[disease_span[0]: disease_span[1]]
diseases.append(disease)
return diseases
def find_end(text):
"""Find the end of the report."""
ends = [len(text)]
patterns = [
re.compile(r'BY ELECTRONICALLY SIGNING THIS REPORT', re.I),
re.compile(r'\n {3,}DR.', re.I),
re.compile(r'[ ]{1,}RADLINE ', re.I),
re.compile(r'.*electronically signed on', re.I),
re.compile(r'M\[0KM\[0KM')
]
for pattern in patterns:
matchobj = pattern.search(text)
if matchobj:
ends.append(matchobj.start())
return min(ends)
def pattern_repl(matchobj):
"""
Return a replacement string to be used for match object
"""
return ' '.rjust(len(matchobj.group(0)))
def clean_text(text):
"""
Clean text
"""
# Replace [**Patterns**] with spaces.
text = re.sub(r'\[\*\*.*?\*\*\]', pattern_repl, text)
# Replace `_` with spaces.
text = re.sub(r'_', ' ', text)
start = 0
end = find_end(text)
new_text = ''
if start > 0:
new_text += ' ' * start
new_text = text[start:end]
# make sure the new text has the same length of old text.
if len(text) - end > 0:
new_text += ' ' * (len(text) - end)
return new_text
def get_drg_link(drg_code):
drg_code = str(drg_code)
if len(drg_code) == 1:
drg_code = '00' + drg_code
elif len(drg_code) == 2:
drg_code = '0' + drg_code
return f'https://www.findacode.com/code.php?set=DRG&c={drg_code}'
def prettify(dict_list, k):
li = [di[k] for di in dict_list]
result = "\n".join(l for l in li)
return result
def get_json(text_to_annotate):
url = REST_URL + "/annotator?text=" + urllib.parse.quote(text_to_annotate) + "&ontologies=ICD9CM" +\
"&longest_only=false" + "&exclude_numbers=false" + "&whole_word_only=true" + '&exclude_synonyms=false'
opener = urllib.request.build_opener()
opener.addheaders = [('Authorization', 'apikey token=' + API_KEY)]
try:
return json.loads(opener.open(url).read())
except:
return []
def parse_results(results):
if len(results) == 0:
return []
rlist = []
for result in results:
annotations = result['annotations']
for annotation in annotations:
start = annotation['from']-1
end = annotation['to'] - 1
text = annotation['text']
rlist.append({
'start': start,
'end': end,
'text': text,
'link': result['annotatedClass']['@id']
})
return rlist
def get_icd_annotations(text):
response = get_json(text)
annotation_list = parse_results(response)
return annotation_list
def subfinder(mylist, pattern):
mylist = mylist.tolist()
pattern = pattern.tolist()
return list(filter(lambda x: x in pattern, mylist))
def tokenize_icds(tokenizer, annotations, token_ids):
icd_tokens = torch.zeros(token_ids.shape)
for annotation in annotations:
icd = annotation['text']
icd_token_ids = tokenizer(icd, add_special_tokens=False, return_tensors='pt').input_ids[0]
# find index of the beginning icd token
starting_indices = (token_ids==icd_token_ids[0]).nonzero(as_tuple=False)
num_icd_tokens = icd_token_ids.shape[0]
# if there's more than 1 icd token for the given annotation
if num_icd_tokens > 1:
# if there's only one starting index
if starting_indices.shape[0] == 1:
starting_index = starting_indices.item()
icd_tokens[starting_index: starting_index + num_icd_tokens] = 1
# if there's more than 1 starting index, determine which is the appropriate
else:
for starting_index in starting_indices:
if token_ids[starting_index + num_icd_tokens] == icd_token_ids:
icd_tokens[starting_index: starting_index + num_icd_tokens] = 1
# otherwise, set the corresponding index to a value of 1
else:
icd_tokens[starting_indices] = 1
return icd_tokens
def get_attribution(text, tokenizer, model_outputs, inputs, k=7):
tokens = tokenizer.convert_ids_to_tokens(inputs.input_ids[0])
padding_idx = tokens.index('[PAD]')
tokens = tokens[:padding_idx][1:-1]
attn = model_outputs[-1][0]
agg_attn, final_text = reconstruct_text(tokenizer=tokenizer, tokens=tokens, attn=attn)
return agg_attn, final_text
def reconstruct_text(tokenizer, tokens, attn):
"""
find a word -> token_id mapping that allows you to
perform an aggregation on the sub-tokens' attention
values
"""
reconstructed_text = tokenizer.convert_tokens_to_string(tokens)
num_subtokens = len([t for t in tokens if t.startswith('#')])
aggregated_attn = torch.zeros(len(tokens) - num_subtokens)
token_indices = [0]
token_idx = 0
reconstructed_tokens = []
for i, token in enumerate(tokens[1:], start=1):
# case when a token is a subtoken
if token.startswith('#'):
token_indices.append(i)
else:
# reconstruct the tokens to make sure you're doing this correctly
reconstructed_token = ''.join(tokens[i].replace('#', '') for i in token_indices)
reconstructed_tokens.append(reconstructed_token)
# find the corresponding attention vectors
aggregated_attn[token_idx] = torch.mean(attn[token_indices])
# create new index list
token_indices = [i]
token_idx += 1
# reconstruct the tokens to make sure you're doing this correctly
reconstructed_token = ''.join(tokens[i].replace('#', '') for i in token_indices)
reconstructed_tokens.append(reconstructed_token)
# find the corresponding attention vectors
aggregated_attn[token_idx] = torch.mean(attn[token_indices])
# final representation of text
final_text = ' '.join(reconstructed_tokens).replace(' .', '.')
final_text = final_text.replace(' ,', ',')
# final_text == reconstructed_text
return aggregated_attn, reconstructed_tokens
def load_rule(path):
rule_df = pd.read_csv(path)
# remove MDC 15 - neonate and couple other codes related to postcare
if 'MS' in path:
msk = (rule_df['MDC']!='15') & (~rule_df['MS-DRG'].isin([945, 946, 949, 950, 998, 999]))
space = sorted(rule_df[msk]['DRG_CODE'].unique())
elif 'APR' in path:
msk = (rule_df['MDC']!='15') & (~rule_df['APR-DRG'].isin([860, 863]))
space = sorted(rule_df[msk]['DRG_CODE'].unique())
drg2idx = {}
for d in space:
drg2idx[d] = len(drg2idx)
i2d = {v:k for k,v in drg2idx.items()}
d2mdc, d2w = {}, {}
for _, r in rule_df.iterrows():
drg = r['DRG_CODE']
mdc = r['MDC']
w = r['WEIGHT']
d2mdc[drg] = mdc
d2w[drg] = w
return rule_df, drg2idx, i2d, d2mdc, d2w
def visualize_attn(model_results):
class_id = model_results['class_dsc']
prob = model_results['prob']
attn = model_results['attn']
tokens = model_results['tokens']
scaler = PyTMinMaxScalerVectorized()
normalized_attn = scaler(attn)
viz_record = visualization.VisualizationDataRecord(
word_attributions=normalized_attn,
pred_prob=prob,
pred_class=class_id,
true_class=class_id,
attr_class=0,
attr_score=1,
raw_input_ids=tokens,
convergence_score=1
)
return visualize_text(
viz_record,
drg_link=model_results['drg_link'],
icd_annotations=model_results['icd_results'],
diseases=model_results['diseases']
)
def modify_attn_html(attn_html):
attn_split = attn_html.split('<mark')
htmls = [attn_split[0]]
for html in attn_split[1:]:
# wrap around href tag
href_html = f'<a href="https://" \
<mark{html} \
</a>'
htmls.append(href_html)
return "".join(htmls)
def modify_code_html(html, link, icd=False):
html = html.split('<td>')[1].split('</td>')[0]
href_html = f'<td><a href="{link}"{html}</a></td>'
if icd:
href_html = href_html.replace('<td>', '').replace('</td>', '')
return href_html
def modify_drg_html(html, drg_link):
return modify_code_html(html=html, link=drg_link, icd=False)
def get_icd_html(icd_list):
if len(icd_list) == 0:
return '<td><text style="padding-right:2em"><b>N/A</b></text></td>'
final_html = '<td>'
icd_set = set()
for icd_dict in icd_list:
text, link = icd_dict['text'], icd_dict['link']
if text in icd_set:
continue
tmp_html = visualization.format_classname(classname=text)
html = modify_code_html(html=tmp_html, link=link, icd=True)
final_html += html
icd_set.add(text)
return final_html + '</td>'
def get_disease_html(diseases):
if len(diseases) == 0:
return '<td><text style="padding-right:2em"><b>N/A</b></text></td>'
diseases = list(set(diseases))
diseases_str = ', '.join(diseases)
html = visualization.format_classname(classname=diseases_str)
return html + '</td>'
# copied out of captum because we need raw html instead of a jupyter widget
def visualize_text(datarecord, drg_link, icd_annotations, diseases):
dom = ["<table width: 100%>"]
rows = [
"<th style='text-align: left'>Predicted DRG</th>"
"<th style='text-align: left'>Word Importance</th>"
"<th style='text-align: left'>Diseases</th>"
"<th style='text-align: left'>ICD Codes</th>"
]
pred_class_html = visualization.format_classname(datarecord.pred_class)
icd_class_html = get_icd_html(icd_annotations)
disease_html = get_disease_html(diseases)
pred_class_html = modify_drg_html(html=pred_class_html, drg_link=drg_link)
word_attn_html = visualization.format_word_importances(
datarecord.raw_input_ids, datarecord.word_attributions
)
rows.append(
"".join(
[
"<tr>",
pred_class_html,
word_attn_html,
disease_html,
icd_class_html,
"<tr>",
]
)
)
dom.append("".join(rows))
dom.append("</table>")
html = "".join(dom)
return html
|