Spaces:
Sleeping
Sleeping
File size: 1,892 Bytes
d20d20b c2af308 73c7429 d20d20b d899b2a c51a031 476f0ee c51a031 3743daa c51a031 d899b2a 2da383c ab1b586 7c540ed f2886e5 c51a031 d20d20b d899b2a 2da383c c640efe 2da383c c51a031 c8b19ec d20d20b 5fa3b2c 73c7429 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
from fastapi import FastAPI
from pydantic import BaseModel
import requests
from llama_cpp import Llama
import threading
import gc
llms = {
"TinyLLama 1b 4_K_M 2048": {
"nctx": 2048,
"file": "tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf",
"prefix": "<|system|>You are a helpfull assistant</s><|user|>",
"suffix": "</s><|assistant|>"
},
"TinyLLama 1b OpenOrca 4_K_M 2048": {
"nctx": 2048,
"file": "tinyllama-1.1b-1t-openorca.Q4_K_M.gguf",
"prefix": "<|im_start|>system You are a helpfull assistant<|im_end|><|im_start|>user",
"suffix": "<|im_end|><|im_start|>assistant"
},
"OpenLLama 3b 4_K_M 196k": {
"nctx": 50000,
"file": "open-llama-3b-v2-wizard-evol-instuct-v2-196k.Q4_K_M.gguf",
"prefix": "### HUMAN:",
"suffix": "### RESPONSE:"
},
"Phi-2 2.7b 4_K_M 2048": {
"nctx": 2048,
"file": "phi-2.Q4_K_M.gguf",
"prefix": "Instruct:",
"suffix": "Output:"
},
"Stable Zephyr 3b 4_K_M 4096": {
"nctx": 4096,
"file": "stablelm-zephyr-3b.Q4_K_M.gguf",
"prefix": "<|user|>",
"suffix": "<|endoftext|><|assistant|>"
}
}
model = llms["TinyLLama 1b OpenOrca 4_K_M 2048"]
llm = Llama(model_path="./code/"+model['file'], n_ctx=2048, verbose=True, n_threads=8)
#Fast API
app = FastAPI()
@app.post("/change_llm")
async def change(item: dict):
model = llms[item['llm']]
nctx = item['nctx'] if 'nctx' in item.keys() else model['nctx']
llm = Llama(model_path="./code/"+model['file'], n_ctx=nctx, verbose=True, n_threads=8)
@app.post("/llm_on_cpu")
async def stream(item: dict):
prefix=model['prefix']
suffix=model['suffix']
max_tokens = item['max_tokens'] if 'max_tokens' in item.keys() else 512
user="""
{prompt}"""
prompt = f"{prefix}{user.replace('{prompt}', item['prompt'])}{suffix}"
result = llm(prompt, max_tokens=max_tokens)
return result |