from fastapi import FastAPI from pydantic import BaseModel import requests from ctransformers import AutoModelForCausalLM llms = { "TinyLLama 1b 4_K_M 2048": { "nctx": 2048, "file": "tinyllama-1.1b-chat-v0.3.Q4_K_M.gguf", "prefix": "### Human:", "suffix": "### Assistant:" }, "TinyLLama 1b OpenOrca 4_K_M 2048": { "nctx": 2048, "file": "tinyllama-1.1b-1t-openorca.Q4_K_M.gguf", "prefix": "<|im_start|>system You are a helpfull assistant<|im_end|><|im_start|>user", "suffix": "<|im_end|><|im_start|>assistant" }, "OpenLLama 3b 4_K_M 196k": { "nctx": 80000, "file": "open-llama-3b-v2-wizard-evol-instuct-v2-196k.Q4_K_M.gguf", "prefix": "### HUMAN:", "suffix": "### RESPONSE:" }, "Phi-2 2.7b 4_K_M 2048": { "nctx": 2048, "file": "phi-2.Q4_K_M.gguf", "prefix": "Instruct:", "suffix": "Output:" }, "Mixtral MOE 7bx2 4_K_M 32K": { "nctx": 32000, "file": "mixtral_7bx2_moe.Q4_K_M.gguf", "prefix": "", "suffix": "" }, "Stable Zephyr 3b 4_K_M 4096": { "nctx": 4096, "file": "stablelm-zephyr-3b.Q4_K_M.gguf", "prefix": "<|user|>", "suffix": "<|endoftext|><|assistant|>" } } #Pydantic object class validation(BaseModel): prompt: str llm: str #Fast API app = FastAPI() @app.post("/llm_on_cpu") async def stream(item: validation): model = llms[item.llm] prefix=model['prefix'] suffix=model['suffix'] nctx = model['nctx'] if 'nctx' in item.keys() else 1024 max_tokens = model['max_tokens'] if 'max_tokens' in item.keys() else 512 user=""" {prompt}""" model = Llama(model_path="./"+model['file'], n_ctx=model['nctx'], verbose=False, n_threads=8) prompt = f"{prefix}{user.replace('{prompt}', item.prompt)}{suffix}" return llm(prompt, max_tokens=max_tokens)