from fastapi import FastAPI from pydantic import BaseModel import requests from llama_cpp import Llama import threading import gc llms = { "TinyLLama 1b 4_K_M 2048": { "nctx": 2048, "file": "tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf", "prefix": "<|system|>You are a helpfull assistant<|user|>", "suffix": "<|assistant|>" }, "TinyLLama 1b OpenOrca 4_K_M 2048": { "nctx": 2048, "file": "tinyllama-1.1b-1t-openorca.Q4_K_M.gguf", "prefix": "<|im_start|>system You are a helpfull assistant<|im_end|><|im_start|>user", "suffix": "<|im_end|><|im_start|>assistant" }, "OpenLLama 3b 4_K_M 196k": { "nctx": 50000, "file": "open-llama-3b-v2-wizard-evol-instuct-v2-196k.Q4_K_M.gguf", "prefix": "### HUMAN:", "suffix": "### RESPONSE:" }, "Phi-2 2.7b 4_K_M 2048": { "nctx": 2048, "file": "phi-2.Q4_K_M.gguf", "prefix": "Instruct:", "suffix": "Output:" }, "Stable Zephyr 3b 4_K_M 4096": { "nctx": 4096, "file": "stablelm-zephyr-3b.Q4_K_M.gguf", "prefix": "<|user|>", "suffix": "<|endoftext|><|assistant|>" } } model = llms["TinyLLama 1b OpenOrca 4_K_M 2048"] llm = Llama(model_path="./code/"+model['file'], n_ctx=2048, verbose=True, n_threads=8) #Fast API app = FastAPI() @app.post("/change_llm") async def change(item: dict): model = llms[item['llm']] nctx = item['nctx'] if 'nctx' in item.keys() else model['nctx'] llm = Llama(model_path="./code/"+model['file'], n_ctx=nctx, verbose=True, n_threads=8) @app.post("/llm_on_cpu") async def stream(item: dict): prefix=model['prefix'] suffix=model['suffix'] max_tokens = item['max_tokens'] if 'max_tokens' in item.keys() else 512 user=""" {prompt}""" prompt = f"{prefix}{user.replace('{prompt}', item['prompt'])}{suffix}" result = llm(prompt, max_tokens=max_tokens) return result