File size: 853 Bytes
c123d66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import gradio as gr
from fastai.vision.all import *
import skimage

learn = load_learner('export.pkl')

labels = learn.dls.vocab
def predict(img):
    img = PILImage.create(img)
    pred,pred_idx,probs = learn.predict(img)
    return {labels[i]: float(probs[i]) for i in range(len(labels))}

title = "Pet Breed Classifier"
description = "A pet breed classifier (both cats and dogs) trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces by Dan Waldie."
examples = ['wheaten.jpeg', 'havanese.jpeg', 'cockerspaniel.jpg', 'pyrenees.jpeg']
interpretation='default'
enable_queue=True

gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch()