from transformers import DistilBertForQuestionAnswering, DistilBertConfig, DistilBertTokenizerFast import torch model = DistilBertForQuestionAnswering(DistilBertConfig.from_pretrained('distilbert/distilbert-base-multilingual-cased')).to("cpu") st_dict = torch.load("save/best_f1/checkpoint/QazDistilBERT.pt") model.load_state_dict(st_dict) tokenizer = DistilBertTokenizerFast.from_pretrained("dappyx/QazDistilbertFast-tokenizerV3") import gradio as gr def qa_pipeline(text,question): inputs = tokenizer(question, text, return_tensors="pt") input_ids = inputs['input_ids'].to("cpu") attention_mask = inputs['attention_mask'].to("cpu") outputs = model(input_ids=input_ids,attention_mask=attention_mask) start_index = torch.argmax(outputs.start_logits, dim=-1).item() end_index = torch.argmax(outputs.end_logits, dim=-1).item() predict_answer_tokens = inputs.input_ids[0, start_index : end_index + 1] return tokenizer.decode(predict_answer_tokens) def answer_question(context, question): result = qa_pipeline(context, question) return result # Создаем интерфейс iface = gr.Interface( fn=answer_question, inputs=[ gr.Textbox(lines=10, label="Context"), gr.Textbox(lines=2, label="Question") ], outputs="text", title="Question Answering Model", description="Введите контекст и задайте вопрос, чтобы получить ответ." ) # Запускаем интерфейс iface.launch()