image-tokens / app.py
darknoon's picture
Update app.py
674d65b verified
raw
history blame
7.92 kB
from typing import List, Literal
import gradio as gr
import torch
import numpy as np
import colorsys
from diffusers import VQModel
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.wuerstchen.modeling_paella_vq_model import PaellaVQModel
from abc import abstractmethod
import torch.backends
import torch.mps
from PIL import Image
import spaces
if torch.cuda.is_available():
device = torch.device("cuda")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
# abstract class VQImageRoundtripPipeline:
class ImageRoundtripPipeline:
@abstractmethod
def roundtrip_image(self, image, output_type="pil"): ...
class VQImageRoundtripPipeline(ImageRoundtripPipeline):
vqvae: VQModel
vae_scale_factor: int
vqvae_processor: VaeImageProcessor
def __init__(self):
self.vqvae = VQModel.from_pretrained("amused/amused-512", subfolder="vqvae")
self.vqvae.eval()
self.vqvae.to(device)
self.vae_scale_factor = 2 ** (len(self.vqvae.config.block_out_channels) - 1)
self.vqvae_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor, do_normalize=False
)
print("VQ-GAN model loaded", self.vqvae)
def roundtrip_image(self, image, output_type="pil"):
image = self.vqvae_processor.preprocess(image)
device = self.vqvae.device
needs_upcasting = (
self.vqvae.dtype == torch.float16 and self.vqvae.config.force_upcast
)
batch_size, im_channels, height, width = image.shape
if needs_upcasting:
self.vqvae.float()
latents = self.vqvae.encode(
image.to(dtype=self.vqvae.dtype, device=device)
).latents
latents_batch_size, latent_channels, latents_height, latents_width = (
latents.shape
)
latents = self.vqvae.quantize(latents)[2][2].reshape(
batch_size, latents_height, latents_width
)
output = self.vqvae.decode(
latents,
force_not_quantize=True,
shape=(
batch_size,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
self.vqvae.config.latent_channels,
),
).sample.clip(0, 1)
output = self.vqvae_processor.postprocess(output, output_type)
if needs_upcasting:
self.vqvae.half()
return output[0], latents.cpu().numpy(), self.vqvae.config.num_vq_embeddings
class PaellaImageRoundtripPipeline(ImageRoundtripPipeline):
vqgan: PaellaVQModel
vae_scale_factor: int
vqvae_processor: VaeImageProcessor
def __init__(self):
self.vqgan = PaellaVQModel.from_pretrained(
"warp-ai/wuerstchen", subfolder="vqgan"
)
self.vqgan.eval()
self.vqgan.to(device)
self.vae_scale_factor = 4
self.vqvae_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor, do_normalize=False
)
print("Paella VQ-GAN model loaded", self.vqgan)
def roundtrip_image(self, image, output_type="pil"):
image = self.vqvae_processor.preprocess(image)
device = self.vqgan.device
batch_size, im_channels, height, width = image.shape
latents = self.vqgan.encode(
image.to(dtype=self.vqgan.dtype, device=device)
).latents
latents_batch_size, latent_channels, latents_height, latents_width = (
latents.shape
)
# latents = latents * self.vqgan.config.scale_factor
# Manually quantize so we can inspect
latents_q = self.vqgan.vquantizer(latents)[2][2].reshape(
batch_size, latents_height, latents_width
)
print("latents after quantize", (latents_q.shape, latents_q.dtype))
images = self.vqgan.decode(latents).sample.clamp(0, 1)
output = self.vqvae_processor.postprocess(images, output_type)
# if needs_upcasting:
# self.vqgan.half()
return output[0], latents_q.cpu().numpy(), self.vqgan.config.num_vq_embeddings
pipeline_paella = PaellaImageRoundtripPipeline()
pipeline_vq = VQImageRoundtripPipeline()
# Function to generate a list of unique colors
def generate_unique_colors_hsl(n):
colors = []
for i in range(n):
hue = i / (n // 4) # Distribute hues evenly around the color wheel 4 times
lightness = 0.8 - (i / n) * 0.6 # Decrease brightness from 0.8 to 0.2
saturation = 1.0
rgb = colorsys.hls_to_rgb(hue, lightness, saturation)
rgb = tuple(int(255 * x) for x in rgb)
colors.append(rgb)
return colors
# Function to create the image from VQGAN tokens
def vqgan_tokens_to_image(tokens, codebook_size, downscale_factor):
# Generate unique colors for each token in the codebook
colors = generate_unique_colors_hsl(codebook_size)
# Create a lookup table
lookup_table = np.array(colors, dtype=np.uint8)
# Extract the token array (remove the batch dimension)
token_array = tokens[0]
# Map tokens to their RGB colors using the lookup table
color_image = lookup_table[token_array]
# Create a PIL image from the numpy array
img = Image.fromarray(color_image, "RGB")
# Upscale the image using nearest neighbor interpolation
img = img.resize(
(
color_image.shape[1] * downscale_factor,
color_image.shape[0] * downscale_factor,
),
Image.NEAREST,
)
return img
# This is a gradio space that lets you encode an image with various encoder-decoder pairs, eg VQ-GAN, SDXL's VAE, etc and check the image quality
# def image_grid_to_string(image_grid):
# """Convert a latent vq index "image" grid to a string, input shape is (1, height, width)"""
# return "\n".join(
# [" ".join([str(int(x)) for x in row]) for row in image_grid.squeeze()]
# )
def describe_shape(shape):
return f"Shape: {shape} num elements: {np.prod(shape)}"
@spaces.GPU(duration=32)
@torch.no_grad()
def roundtrip_image(
image,
model: List[Literal["vqgan", Literal["paella"]]],
size: List[Literal["256x256", "512x512", "1024x1024"]],
output_type="pil",
):
if size == "256x256":
image = image.resize((256, 256))
elif size == "512x512":
image = image.resize((512, 512))
elif size == "1024x1024":
image = image.resize((1024, 1024))
else:
raise ValueError(f"Unknown size {size}")
if model == "vqgan":
image, latents, codebook_size = pipeline_vq.roundtrip_image(image, output_type)
return (
image,
vqgan_tokens_to_image(
latents, codebook_size, downscale_factor=pipeline_vq.vae_scale_factor
),
describe_shape(latents.shape),
)
elif model == "paella":
image, latents, codebook_size = pipeline_paella.roundtrip_image(
image, output_type
)
return (
image,
vqgan_tokens_to_image(
latents, codebook_size, downscale_factor=pipeline_vq.vae_scale_factor
),
describe_shape(latents.shape),
)
else:
raise ValueError(f"Unknown model {model}")
demo = gr.Interface(
fn=roundtrip_image,
inputs=[
gr.Image(type="pil"),
gr.Dropdown(["vqgan", "paella"], label="Model", value="vqgan"),
gr.Dropdown(["256x256", "512x512", "1024x1024"], label="Size", value="512x512"),
],
outputs=[
gr.Image(label="Reconstructed"),
gr.Image(label="Tokens"),
gr.Text(label="VQ Shape"),
],
title="Image Tokenizer Playground",
description="Round-trip an image through an encode-decoder pair to see the quality loss from the VQ-GAN for image generation, etc.",
)
demo.launch()