Spaces:
Sleeping
Sleeping
Upload from local env
Browse files
app.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Literal
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
import colorsys
|
6 |
+
|
7 |
+
from diffusers import VQModel
|
8 |
+
from diffusers.image_processor import VaeImageProcessor
|
9 |
+
from diffusers.pipelines.wuerstchen.modeling_paella_vq_model import PaellaVQModel
|
10 |
+
from abc import abstractmethod
|
11 |
+
import torch.backends
|
12 |
+
import torch.mps
|
13 |
+
from PIL import Image
|
14 |
+
|
15 |
+
|
16 |
+
if torch.cuda.is_available():
|
17 |
+
device = torch.device("cuda")
|
18 |
+
elif torch.backends.mps.is_available():
|
19 |
+
device = torch.device("mps")
|
20 |
+
else:
|
21 |
+
device = torch.device("cpu")
|
22 |
+
|
23 |
+
|
24 |
+
# abstract class VQImageRoundtripPipeline:
|
25 |
+
class ImageRoundtripPipeline:
|
26 |
+
@abstractmethod
|
27 |
+
def roundtrip_image(self, image, output_type="pil"): ...
|
28 |
+
|
29 |
+
|
30 |
+
class VQImageRoundtripPipeline(ImageRoundtripPipeline):
|
31 |
+
vqvae: VQModel
|
32 |
+
vae_scale_factor: int
|
33 |
+
vqvae_processor: VaeImageProcessor
|
34 |
+
|
35 |
+
def __init__(self):
|
36 |
+
self.vqvae = VQModel.from_pretrained("amused/amused-512", subfolder="vqvae")
|
37 |
+
self.vqvae.eval()
|
38 |
+
self.vqvae.to(device)
|
39 |
+
self.vae_scale_factor = 2 ** (len(self.vqvae.config.block_out_channels) - 1)
|
40 |
+
self.vqvae_processor = VaeImageProcessor(
|
41 |
+
vae_scale_factor=self.vae_scale_factor, do_normalize=False
|
42 |
+
)
|
43 |
+
print("VQ-GAN model loaded", self.vqvae)
|
44 |
+
|
45 |
+
def roundtrip_image(self, image, output_type="pil"):
|
46 |
+
image = self.vqvae_processor.preprocess(image)
|
47 |
+
device = self.vqvae.device
|
48 |
+
needs_upcasting = (
|
49 |
+
self.vqvae.dtype == torch.float16 and self.vqvae.config.force_upcast
|
50 |
+
)
|
51 |
+
|
52 |
+
batch_size, im_channels, height, width = image.shape
|
53 |
+
|
54 |
+
if needs_upcasting:
|
55 |
+
self.vqvae.float()
|
56 |
+
|
57 |
+
latents = self.vqvae.encode(
|
58 |
+
image.to(dtype=self.vqvae.dtype, device=device)
|
59 |
+
).latents
|
60 |
+
latents_batch_size, latent_channels, latents_height, latents_width = (
|
61 |
+
latents.shape
|
62 |
+
)
|
63 |
+
latents = self.vqvae.quantize(latents)[2][2].reshape(
|
64 |
+
batch_size, latents_height, latents_width
|
65 |
+
)
|
66 |
+
output = self.vqvae.decode(
|
67 |
+
latents,
|
68 |
+
force_not_quantize=True,
|
69 |
+
shape=(
|
70 |
+
batch_size,
|
71 |
+
height // self.vae_scale_factor,
|
72 |
+
width // self.vae_scale_factor,
|
73 |
+
self.vqvae.config.latent_channels,
|
74 |
+
),
|
75 |
+
).sample.clip(0, 1)
|
76 |
+
output = self.vqvae_processor.postprocess(output, output_type)
|
77 |
+
|
78 |
+
if needs_upcasting:
|
79 |
+
self.vqvae.half()
|
80 |
+
|
81 |
+
return output[0], latents.cpu().numpy(), self.vqvae.config.num_vq_embeddings
|
82 |
+
|
83 |
+
|
84 |
+
class PaellaImageRoundtripPipeline(ImageRoundtripPipeline):
|
85 |
+
vqgan: PaellaVQModel
|
86 |
+
vae_scale_factor: int
|
87 |
+
vqvae_processor: VaeImageProcessor
|
88 |
+
|
89 |
+
def __init__(self):
|
90 |
+
self.vqgan = PaellaVQModel.from_pretrained(
|
91 |
+
"warp-ai/wuerstchen", subfolder="vqgan"
|
92 |
+
)
|
93 |
+
self.vqgan.eval()
|
94 |
+
self.vqgan.to(device)
|
95 |
+
self.vae_scale_factor = 4
|
96 |
+
self.vqvae_processor = VaeImageProcessor(
|
97 |
+
vae_scale_factor=self.vae_scale_factor, do_normalize=False
|
98 |
+
)
|
99 |
+
print("Paella VQ-GAN model loaded", self.vqgan)
|
100 |
+
|
101 |
+
def roundtrip_image(self, image, output_type="pil"):
|
102 |
+
image = self.vqvae_processor.preprocess(image)
|
103 |
+
device = self.vqgan.device
|
104 |
+
|
105 |
+
batch_size, im_channels, height, width = image.shape
|
106 |
+
|
107 |
+
latents = self.vqgan.encode(
|
108 |
+
image.to(dtype=self.vqgan.dtype, device=device)
|
109 |
+
).latents
|
110 |
+
latents_batch_size, latent_channels, latents_height, latents_width = (
|
111 |
+
latents.shape
|
112 |
+
)
|
113 |
+
# latents = latents * self.vqgan.config.scale_factor
|
114 |
+
# Manually quantize so we can inspect
|
115 |
+
latents_q = self.vqgan.vquantizer(latents)[2][2].reshape(
|
116 |
+
batch_size, latents_height, latents_width
|
117 |
+
)
|
118 |
+
print("latents after quantize", (latents_q.shape, latents_q.dtype))
|
119 |
+
images = self.vqgan.decode(latents).sample.clamp(0, 1)
|
120 |
+
output = self.vqvae_processor.postprocess(images, output_type)
|
121 |
+
|
122 |
+
# if needs_upcasting:
|
123 |
+
# self.vqgan.half()
|
124 |
+
|
125 |
+
return output[0], latents_q.cpu().numpy(), self.vqgan.config.num_vq_embeddings
|
126 |
+
|
127 |
+
|
128 |
+
pipeline_paella = PaellaImageRoundtripPipeline()
|
129 |
+
pipeline_vq = VQImageRoundtripPipeline()
|
130 |
+
|
131 |
+
|
132 |
+
# Function to generate a list of unique colors
|
133 |
+
def generate_unique_colors_hsl(n):
|
134 |
+
colors = []
|
135 |
+
for i in range(n):
|
136 |
+
hue = i / (n // 4) # Distribute hues evenly around the color wheel 4 times
|
137 |
+
lightness = 0.8 - (i / n) * 0.6 # Decrease brightness from 0.8 to 0.2
|
138 |
+
saturation = 1.0
|
139 |
+
rgb = colorsys.hls_to_rgb(hue, lightness, saturation)
|
140 |
+
rgb = tuple(int(255 * x) for x in rgb)
|
141 |
+
colors.append(rgb)
|
142 |
+
return colors
|
143 |
+
|
144 |
+
|
145 |
+
# Function to create the image from VQGAN tokens
|
146 |
+
def vqgan_tokens_to_image(tokens, codebook_size, downscale_factor):
|
147 |
+
# Generate unique colors for each token in the codebook
|
148 |
+
colors = generate_unique_colors_hsl(codebook_size)
|
149 |
+
|
150 |
+
# Create a lookup table
|
151 |
+
lookup_table = np.array(colors, dtype=np.uint8)
|
152 |
+
|
153 |
+
# Extract the token array (remove the batch dimension)
|
154 |
+
token_array = tokens[0]
|
155 |
+
|
156 |
+
# Map tokens to their RGB colors using the lookup table
|
157 |
+
color_image = lookup_table[token_array]
|
158 |
+
|
159 |
+
# Create a PIL image from the numpy array
|
160 |
+
img = Image.fromarray(color_image, "RGB")
|
161 |
+
|
162 |
+
# Upscale the image using nearest neighbor interpolation
|
163 |
+
img = img.resize(
|
164 |
+
(
|
165 |
+
color_image.shape[1] * downscale_factor,
|
166 |
+
color_image.shape[0] * downscale_factor,
|
167 |
+
),
|
168 |
+
Image.NEAREST,
|
169 |
+
)
|
170 |
+
|
171 |
+
return img
|
172 |
+
|
173 |
+
|
174 |
+
# This is a gradio space that lets you encode an image with various encoder-decoder pairs, eg VQ-GAN, SDXL's VAE, etc and check the image quality
|
175 |
+
|
176 |
+
|
177 |
+
# def image_grid_to_string(image_grid):
|
178 |
+
# """Convert a latent vq index "image" grid to a string, input shape is (1, height, width)"""
|
179 |
+
# return "\n".join(
|
180 |
+
# [" ".join([str(int(x)) for x in row]) for row in image_grid.squeeze()]
|
181 |
+
# )
|
182 |
+
|
183 |
+
|
184 |
+
def describe_shape(shape):
|
185 |
+
return f"Shape: {shape} num elements: {np.prod(shape)}"
|
186 |
+
|
187 |
+
|
188 |
+
# @spaces.GPU
|
189 |
+
@torch.no_grad()
|
190 |
+
def roundtrip_image(
|
191 |
+
image,
|
192 |
+
model: List[Literal["vqgan", Literal["paella"]]],
|
193 |
+
size: List[Literal["256x256", "512x512", "1024x1024"]],
|
194 |
+
output_type="pil",
|
195 |
+
):
|
196 |
+
if size == "256x256":
|
197 |
+
image = image.resize((256, 256))
|
198 |
+
elif size == "512x512":
|
199 |
+
image = image.resize((512, 512))
|
200 |
+
elif size == "1024x1024":
|
201 |
+
image = image.resize((1024, 1024))
|
202 |
+
else:
|
203 |
+
raise ValueError(f"Unknown size {size}")
|
204 |
+
|
205 |
+
if model == "vqgan":
|
206 |
+
image, latents, codebook_size = pipeline_vq.roundtrip_image(image, output_type)
|
207 |
+
return (
|
208 |
+
image,
|
209 |
+
vqgan_tokens_to_image(
|
210 |
+
latents, codebook_size, downscale_factor=pipeline_vq.vae_scale_factor
|
211 |
+
),
|
212 |
+
describe_shape(latents.shape),
|
213 |
+
)
|
214 |
+
elif model == "paella":
|
215 |
+
image, latents, codebook_size = pipeline_paella.roundtrip_image(
|
216 |
+
image, output_type
|
217 |
+
)
|
218 |
+
return (
|
219 |
+
image,
|
220 |
+
vqgan_tokens_to_image(
|
221 |
+
latents, codebook_size, downscale_factor=pipeline_vq.vae_scale_factor
|
222 |
+
),
|
223 |
+
describe_shape(latents.shape),
|
224 |
+
)
|
225 |
+
else:
|
226 |
+
raise ValueError(f"Unknown model {model}")
|
227 |
+
|
228 |
+
|
229 |
+
demo = gr.Interface(
|
230 |
+
fn=roundtrip_image,
|
231 |
+
inputs=[
|
232 |
+
gr.Image(type="pil"),
|
233 |
+
gr.Dropdown(["vqgan", "paella"], label="Model", value="vqgan"),
|
234 |
+
gr.Dropdown(["256x256", "512x512", "1024x1024"], label="Size", value="512x512"),
|
235 |
+
],
|
236 |
+
outputs=[
|
237 |
+
gr.Image(label="Reconstructed"),
|
238 |
+
gr.Image(label="Tokens"),
|
239 |
+
gr.Text(label="VQ Shape"),
|
240 |
+
],
|
241 |
+
title="Image Tokenizer Playground",
|
242 |
+
description="Round-trip an image through an encode-decoder pair to see the quality loss from the VQ-GAN for image generation, etc.",
|
243 |
+
)
|
244 |
+
|
245 |
+
demo.launch()
|