Spaces:
Runtime error
Runtime error
File size: 5,101 Bytes
b9970ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
from langchain.memory import ConversationBufferMemory
from langchain.prompts import PromptTemplate
from langchain.chains import ConversationChain
import os
import runpod
from dotenv import load_dotenv
from langchain.llms import HuggingFaceTextGenInference
from langchain.schema import BaseOutputParser
import re
import re
from typing import List
from langchain.schema import BaseOutputParser
import torch
from transformers import (
AutoTokenizer,
StoppingCriteria,
)
# Load the .env file
load_dotenv()
# Get the API key from the environment variable
runpod.api_key = os.getenv("RUNPOD_API_KEY")
os.environ["LANGCHAIN_WANDB_TRACING"] = "true"
os.environ["WANDB_PROJECT"] = "falcon_hackathon"
os.environ["WANDB_API_KEY"] = os.getenv("WANDB_API_KEY")
pod_id = os.getenv("POD_ID")
class CleanupOutputParser(BaseOutputParser):
def parse(self, text: str) -> str:
user_pattern = r"\nUser"
text = re.sub(user_pattern, "", text)
human_pattern = r"\nHuman:"
text = re.sub(human_pattern, "", text)
ai_pattern = r"\nAI:"
return re.sub(ai_pattern, "", text).strip()
@property
def _type(self) -> str:
return "output_parser"
class StopGenerationCriteria(StoppingCriteria):
def __init__(
self, tokens: List[List[str]], tokenizer: AutoTokenizer, device: torch.device
):
stop_token_ids = [tokenizer.convert_tokens_to_ids(t) for t in tokens]
self.stop_token_ids = [
torch.tensor(x, dtype=torch.long, device=device) for x in stop_token_ids
]
def __call__(
self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
) -> bool:
for stop_ids in self.stop_token_ids:
if torch.eq(input_ids[0][-len(stop_ids) :], stop_ids).all():
return True
return False
class Falcon_7b_llm():
def __init__(self):
inference_server_url_cloud = f"https://{pod_id}-80.proxy.runpod.net"
template = """You are a chatbot called 'Falcon Barista' working at a coffee shop.
Your primary function is to take orders from customers.
Start with a greeting.
You have the following menu with prices. Dont mention the price unless asked. Do not take order for anything other than in menu.
- cappucino-5$
- latte-3$
- frappucino-8$
- juice-3$
If user orders something else, apologise that you dont have that item.
Take the order politely and in a frienldy way. After that confirm the order, tell the order price and say "Goodbye have a nice day".
{chat_history}
Human: {human_input}
AI:"""
prompt = PromptTemplate(
input_variables=["chat_history", "human_input"], template=template
)
memory = ConversationBufferMemory(memory_key="chat_history")
llm_cloud = HuggingFaceTextGenInference(
inference_server_url=inference_server_url_cloud,
max_new_tokens=200,
top_k=10,
top_p=0.95,
typical_p=0.95,
temperature=0.01,
repetition_penalty=1.0,
stop_sequences = ['Mini', 'AI', 'Human', ':']
)
self.llm_chain_cloud = ConversationChain(
prompt=prompt,
llm=llm_cloud,
verbose=True,
memory=memory,
output_parser=CleanupOutputParser(),
input_key='human_input'
)
def restart_state(self):
inference_server_url_cloud = f"https://{pod_id}-80.proxy.runpod.net"
template = """You are a chatbot called 'Falcon Barista' working at a coffee shop.
Your primary function is to take orders from customers.
Start with a greeting.
You have the following menu with prices. Dont mention the price unless asked. Do not take order for anything other than in menu.
- cappucino-5$
- latte-3$
- frappucino-8$
- juice-3$
If user orders something else, apologise that you dont have that item.
Take the order politely and in a frienldy way. After that confirm the order, tell the order price and say "Goodbye have a nice day".
{chat_history}
Human: {human_input}
AI:"""
prompt = PromptTemplate(
input_variables=["chat_history", "human_input"], template=template
)
memory = ConversationBufferMemory(memory_key="chat_history")
llm_cloud = HuggingFaceTextGenInference(
inference_server_url=inference_server_url_cloud,
max_new_tokens=200,
top_k=10,
top_p=0.95,
typical_p=0.95,
temperature=0.01,
repetition_penalty=1.0,
stop_sequences = ['Mini', 'AI', 'Human', ':']
)
self.llm_chain_cloud = ConversationChain(
prompt=prompt,
llm=llm_cloud,
verbose=True,
memory=memory,
output_parser=CleanupOutputParser(),
input_key='human_input'
)
def get_llm_response(self, human_input):
completion = self.llm_chain_cloud.predict(human_input=human_input)
return completion |