Spaces:
Runtime error
Runtime error
darthPanda
commited on
Commit
β’
6525f15
1
Parent(s):
5a07925
Upload 3 files
Browse files- app.py +70 -0
- multi_agent_chatbot.py +66 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
from multi_agent_chatbot import multi_agent_chatbot
|
5 |
+
|
6 |
+
# Chatbot demo with multimodal input (text, markdown, LaTeX, code blocks, image, audio, & video). Plus shows support for streaming text.
|
7 |
+
|
8 |
+
multi_agent_chatbot = multi_agent_chatbot()
|
9 |
+
|
10 |
+
def print_like_dislike(x: gr.LikeData):
|
11 |
+
print(x.index, x.value, x.liked)
|
12 |
+
|
13 |
+
|
14 |
+
def add_text(history, text):
|
15 |
+
history = history + [(text, None)]
|
16 |
+
return history, gr.Textbox(value="", interactive=False)
|
17 |
+
|
18 |
+
|
19 |
+
def add_file(history, file):
|
20 |
+
history = history + [((file.name,), None)]
|
21 |
+
return history
|
22 |
+
|
23 |
+
|
24 |
+
def bot(history):
|
25 |
+
# print(history[-1][0][0])
|
26 |
+
# print(history[-1][0])
|
27 |
+
# print(type(history[-1][0]))
|
28 |
+
# response = "**That's cool!**"
|
29 |
+
response = multi_agent_chatbot.respond(history[-1][0])
|
30 |
+
history[-1][1] = ""
|
31 |
+
for character in response:
|
32 |
+
history[-1][1] += character
|
33 |
+
time.sleep(0.05)
|
34 |
+
yield history
|
35 |
+
|
36 |
+
|
37 |
+
with gr.Blocks() as demo:
|
38 |
+
gr.Markdown("<h1 style='text-align: center; color: #ffffff; font-size: 40px;'> π‘ π€ Garden Whisperer AI - Your personal kitchen gardening assistant (POC)")
|
39 |
+
chatbot = gr.Chatbot(
|
40 |
+
[],
|
41 |
+
elem_id="chatbot",
|
42 |
+
height=800,
|
43 |
+
bubble_full_width=False,
|
44 |
+
avatar_images=(None, (os.path.join(os.path.dirname(__file__), "assets//avatar.png"))),
|
45 |
+
)
|
46 |
+
|
47 |
+
with gr.Row():
|
48 |
+
txt = gr.Textbox(
|
49 |
+
scale=4,
|
50 |
+
show_label=False,
|
51 |
+
placeholder="Enter text and press enter, or upload an image",
|
52 |
+
container=False,
|
53 |
+
)
|
54 |
+
btn = gr.UploadButton("π", file_types=["image", "video", "audio"])
|
55 |
+
|
56 |
+
txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
|
57 |
+
bot, chatbot, chatbot, api_name="bot_response"
|
58 |
+
)
|
59 |
+
txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
|
60 |
+
file_msg = btn.upload(add_file, [chatbot, btn], [chatbot], queue=False).then(
|
61 |
+
bot, chatbot, chatbot
|
62 |
+
)
|
63 |
+
|
64 |
+
chatbot.like(print_like_dislike, None, None)
|
65 |
+
|
66 |
+
|
67 |
+
demo.queue()
|
68 |
+
if __name__ == "__main__":
|
69 |
+
demo.launch()
|
70 |
+
|
multi_agent_chatbot.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from llama_index.legacy.multi_modal_llms.openai_utils import (
|
2 |
+
generate_openai_multi_modal_chat_message,
|
3 |
+
)
|
4 |
+
from llama_index.multi_modal_llms.openai import OpenAIMultiModal
|
5 |
+
from llama_index.core import SimpleDirectoryReader
|
6 |
+
import os
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
|
9 |
+
load_dotenv() # take environment variables from .env.
|
10 |
+
|
11 |
+
class multi_agent_chatbot():
|
12 |
+
def __init__(self):
|
13 |
+
conversational_flow_prompt = """
|
14 |
+
You are a helpful assistant named 'Garden Whisperer AI' specialising in helping users set up kitchen gardens.
|
15 |
+
You will first on board a person in following steps
|
16 |
+
1. ask them to share a picture of their space. analyse the place regarding sunlight, water drainage, etc
|
17 |
+
2. ask them about weather and suggest plants
|
18 |
+
3. Once user is convinced on a plant. Give him suggestions on how to grow it and where to place it in space
|
19 |
+
4. Give user schedule on when to water it
|
20 |
+
4. Also then help user if he wants to know anything
|
21 |
+
|
22 |
+
Keep it brief, simple and fun
|
23 |
+
"""
|
24 |
+
chat_query = generate_openai_multi_modal_chat_message(
|
25 |
+
prompt=conversational_flow_prompt,
|
26 |
+
role="system",
|
27 |
+
)
|
28 |
+
self.chat_messages = [chat_query]
|
29 |
+
self.openai_mm_llm = OpenAIMultiModal(
|
30 |
+
model="gpt-4-vision-preview", api_key= os.environ["OPENAI_API_KEY"] , max_new_tokens=300
|
31 |
+
)
|
32 |
+
|
33 |
+
def respond(self, query):
|
34 |
+
if type(query) == str:
|
35 |
+
chat_query = generate_openai_multi_modal_chat_message(
|
36 |
+
prompt=query,
|
37 |
+
role="user",
|
38 |
+
)
|
39 |
+
else:
|
40 |
+
image_documents = SimpleDirectoryReader(input_files=query).load_data()
|
41 |
+
chat_query = generate_openai_multi_modal_chat_message(
|
42 |
+
prompt="",
|
43 |
+
role="user",
|
44 |
+
image_documents=image_documents,
|
45 |
+
)
|
46 |
+
|
47 |
+
self.chat_messages.append(chat_query)
|
48 |
+
response = self.openai_mm_llm.chat(
|
49 |
+
messages=self.chat_messages,
|
50 |
+
)
|
51 |
+
chat_response = generate_openai_multi_modal_chat_message(
|
52 |
+
prompt=response.message.content,
|
53 |
+
role="assistant",
|
54 |
+
)
|
55 |
+
self.chat_messages.append(chat_response)
|
56 |
+
|
57 |
+
return response.message.content
|
58 |
+
# else:
|
59 |
+
# # put your local directory here
|
60 |
+
# image_documents = SimpleDirectoryReader(input_files=query).load_data()
|
61 |
+
#
|
62 |
+
# response = self.openai_mm_llm.complete(
|
63 |
+
# prompt="Describe the images as an alternative text",
|
64 |
+
# image_documents=image_documents,
|
65 |
+
# )
|
66 |
+
# return response
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
openai
|
2 |
+
python-dotenv
|
3 |
+
gradio
|
4 |
+
wandb
|
5 |
+
gradio_multimodalchatbot
|
6 |
+
llama-index
|