import os
import json
import bcrypt
from typing import List
from pathlib import Path
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_huggingface import HuggingFaceEndpoint
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.schema import StrOutputParser
from operator import itemgetter
from pinecone import Pinecone
from langchain.memory import ConversationBufferMemory
from langchain.schema.runnable import Runnable, RunnablePassthrough, RunnableConfig
from langchain.callbacks.base import BaseCallbackHandler
import chainlit as cl
from chainlit.input_widget import TextInput, Select, Switch, Slider
@cl.password_auth_callback
def auth_callback(username: str, password: str):
auth = json.loads(os.environ['CHAINLIT_AUTH_LOGIN'])
ident = next(d['ident'] for d in auth if d['ident'] == username)
pwd = next(d['pwd'] for d in auth if d['ident'] == username)
resultLogAdmin = bcrypt.checkpw(username.encode('utf-8'), bcrypt.hashpw(ident.encode('utf-8'), bcrypt.gensalt()))
resultPwdAdmin = bcrypt.checkpw(password.encode('utf-8'), bcrypt.hashpw(pwd.encode('utf-8'), bcrypt.gensalt()))
resultRole = next(d['role'] for d in auth if d['ident'] == username)
if resultLogAdmin and resultPwdAdmin and resultRole == "admindatapcc":
return cl.User(
identifier=ident + " : đ§âđŒ Admin Datapcc", metadata={"role": "admin", "provider": "credentials"}
)
elif resultLogAdmin and resultPwdAdmin and resultRole == "userdatapcc":
return cl.User(
identifier=ident + " : đ§âđ User Datapcc", metadata={"role": "user", "provider": "credentials"}
)
os.environ['HUGGINGFACEHUB_API_TOKEN'] = os.environ['HUGGINGFACEHUB_API_TOKEN']
repo_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
model = HuggingFaceEndpoint(
repo_id=repo_id, max_new_tokens=8000, temperature=1.0, task="text2text-generation", streaming=True
)
@cl.on_chat_start
async def on_chat_start():
await cl.Message(f"> REVIEWSTREAM").send()
settings = await cl.ChatSettings(
[
Select(
id="Model",
label="Publications de recherche",
values=["---", "HAL", "Persée"],
initial_index=0,
),
]
).send()
res = await cl.AskActionMessage(
content="
",
actions=[
cl.Action(name="PĂ©dagogie durable", value="PĂ©dagogie durable", label="đ„ PĂ©dagogie durable : exemple : «quels sont les modĂšles d'apprentissage dans les universitĂ©s?»"),
cl.Action(name="Lieux d'apprentissage", value="Lieux d'apprentissage", label="đ„ Lieux d'apprentissage : exemple : «donne des exemples de lieu d'apprentissage dans les universitĂ©s?»"),
cl.Action(name="jdlp", value="JournĂ©e de La PĂ©dagogie", label="đ„ JournĂ©e de La PĂ©dagogie : exemple : «Quelles sont les bonnes pratiques des plateformes de e-learning?»"),
],
timeout="3600"
).send()
if res:
await cl.Message(f"Vous pouvez requĂȘter sur la thĂ©matique : {res.get('value')}").send()
cl.user_session.set("selectRequest", res.get("value"))
memory = ConversationBufferMemory(return_messages=True)
template = """[INST] Vous ĂȘtes un chercheur de l'enseignement supĂ©rieur et vous ĂȘtes douĂ© pour faire des analyses d'articles de recherche sur les thĂ©matiques liĂ©es Ă la pĂ©dagogie, en fonction des critĂšres dĂ©finis ci-avant.
En fonction des informations suivantes et du contexte suivant seulement et strictement, répondez en langue française strictement à la question ci-dessous à partir du contexte ci-dessous. Si vous ne pouvez pas répondre à la question sur la base des informations, dites que vous ne trouvez pas de réponse ou que vous ne parvenez pas à trouver de réponse. Essayez donc de comprendre en profondeur le contexte et répondez uniquement en vous basant sur les informations fournies. Ne générez pas de réponses non pertinentes.
{context}
{question} [/INST]
"""
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
f"Contexte : Vous ĂȘtes un chercheur de l'enseignement supĂ©rieur et vous ĂȘtes douĂ© pour faire des analyses d'articles de recherche sur les thĂ©matiques liĂ©es Ă la pĂ©dagogie. En fonction des informations suivantes et du contexte suivant seulement et strictement.",
),
MessagesPlaceholder(variable_name="history"),
("human", "Contexte : {context}, réponds à la question suivante de la maniÚre la plus pertinente, la plus exhaustive et la plus détaillée possible. {question}."),
]
)
runnable = (
RunnablePassthrough.assign(
history=RunnableLambda(memory.load_memory_variables) | itemgetter("history")
)
| prompt
| model
)
cl.user_session.set("memory", memory)
cl.user_session.set("runnable", runnable)
@cl.on_message
async def on_message(message: cl.Message):
runnable = cl.user_session.get("memory")
runnable = cl.user_session.get("runnable") # type: Runnable
msg = cl.Message(content="")
class PostMessageHandler(BaseCallbackHandler):
"""
Callback handler for handling the retriever and LLM processes.
Used to post the sources of the retrieved documents as a Chainlit element.
"""
def __init__(self, msg: cl.Message):
BaseCallbackHandler.__init__(self)
self.msg = msg
self.sources = set() # To store unique pairs
def on_retriever_end(self, documents, *, run_id, parent_run_id, **kwargs):
for d in documents:
source_page_pair = (d.metadata['source'], d.metadata['page'])
self.sources.add(source_page_pair) # Add unique pairs to the set
def on_llm_end(self, response, *, run_id, parent_run_id, **kwargs):
if len(self.sources):
sources_text = "\n".join([f"{source}#page={page}" for source, page in self.sources])
self.msg.elements.append(
cl.Text(name="Sources", content=sources_text, display="inline")
)
os.environ['PINECONE_API_KEY'] = os.environ['PINECONE_API_KEY']
embeddings = HuggingFaceEmbeddings()
index_name = "all-venus"
pc = Pinecone(
api_key=os.environ['PINECONE_API_KEY']
)
index = pc.Index(index_name)
xq = embeddings.embed_query(message.content)
xc = index.query(vector=xq, filter={"categorie": {"$eq": "bibliographie-OPP-DGDIN"}},top_k=150, include_metadata=True)
context_p = ""
for result in xc['matches']:
context_p = context_p + result['metadata']['text']
async with cl.Step(type="run", name="QA Assistant"):
async for chunk in runnable.astream(
{"question": message.content, "context":context_p},
config=RunnableConfig(callbacks=[
cl.AsyncLangchainCallbackHandler(stream_final_answer=True)
]),
):
await msg.stream_token(chunk)
await msg.send()
memory.chat_memory.add_user_message(message.content)
memory.chat_memory.add_ai_message(msg.content)